
Approximate Order Reliable Broadcast
Aitor Mendívil-Grau !

Dpto. Estadística, Informática y Matemáticas. Universidad Pública de Navarra, Campus Arrosadía
s/n, Pamplona, Spain

Iulen Salinas !

Dpto. Estadística, Informática y Matemáticas. Universidad Pública de Navarra, Campus Arrosadía
s/n, Pamplona, Spain

J.R. González de Mendívil !

Dpto. Estadística, Informática y Matemáticas. Universidad Pública de Navarra, Campus Arrosadía
s/n, Pamplona, Spain

Abstract
Total order broadcast demands consensus in order to ensure that all the participating processes
deliver the broadcast messages in the same order. Consensus may not be achieved in asynchronous
systems where processes may fail. However, the spontaneous order in reliable broadcast protocols
may be close to total order when those protocols are deployed on local area networks. Additionally,
if messages are tagged in their broadcast action using globally ordered identifiers or (logical) clock
values and shortly buffered at reception time, then the resulting approximate total order will only
deliver very few unordered messages. We propose an adaptive approximate (total) order algorithm
based on those mechanisms. The results of an experimental evaluation confirm that it provides a
good throughput and its number of messages delivered in an unordered way may be easily kept
below 1%, even when processes are deployed in different zones of a data center.

2012 ACM Subject Classification Dependable and fault-tolerant systems and networks → Avail-
ability; Dependable and fault-tolerant systems and networks → Redundancy; Network protocols
→ Application layer protocols; Distributed computing methodologies → Distributed algorithms;
Middleware for databases → Data replication tools

Keywords and phrases Reliable broadcast, Total-order broadcast, Approximate-order broadcast

Acknowledgements We want to thank the company Veridas (veridas.com) for providing the infraes-
tructure to carry out the experimental tests of this paper. We also want to thank Prof. F. Muñoz
(Universidad Politécnica de Valencia) and Prof. F. Fariña (Universidad Pública de Navarra) for
their comments that have helped us improve the content of this paper.

1 Introduction

The problem of message broadcasting among a group of processes in fault-tolerant envir-
onments is a problem that appears in many distributed coordination problems. Reliable
Broadcast (R-Broadcast) allows the set of correct processes in the system (those that have
not failed in the execution) to receive the same set of messages. This property is sufficiently
weak to allow us to design a R-Broadcast protocol in an asynchronous distributed system
in where an arbitrary number of processes may crash (crash failures). From a practical
perspective, R-Broadcast is useful, e.g., data replication distributed systems with eventual
consistency [4] can be implemented by using an R-Broadcast protocol and Last Write Wins
rule [2]. Initial works on R-Broadcast are found in the 1980s [3, 6]. Hadzilacos and Toueg
[10] present an excellent summary of R-Broadcast and related problems. They show how
to implement R-Broadcast protocols with additional delivery guarantees in a modular way,
e.g., FIFO and Causal Order (CO) delivery guarantees can be built on top of a simple
R-Broadcast. Extending the quality of service of R-Broadcast has practical implications. For
instance, total order (TO) message delivery is adequate for simplifying the design of data

mailto:aitor.gonzalezdemendivil@unavarra.es
mailto:salinas.115670@e.unavarra.es
mailto:mendivil@unavarra.es

2 Approximate Order Reliable Broadcast

replication systems with atomic consistency [15] or with eventual consistency and atomic
visibility for some type of operations [20].

Unfortunately, TO-R-Broadcast cannot be implemented in an asynchronous distributed
system with crash failures. This is due to (i) the equivalence of TO-R-Broadcast problem and
distributed agreement problem [10]; and (ii) the FLP impossibility result [9]. FLP impossibility
determines that the distributed agreement problem cannot be solved with a deterministic
algorithm in this kind of systems. However, its implementation is possible in the so called
partially synchronous systems [5]. Typically, solutions for distributed agreement also require
a majority of correct processes. Défago [8] surveys the mechanisms that have been used over
the years to obtain TO-R-Broadcast protocols.

It is a well-known fact that when R-Broadcast is implemented in a cluster of nodes over
a Local Area Network (LAN), delivered messages at different processes appear in same order
most of the time. This idea is exploited by the designers of data replication systems in an
optimistic way: (i) the broadcast message is optimistically delivered and the application
executes its operation; (ii) by means of another TO-R-Broadcast protocol, the confirmation
of the order of the messages already delivered in an optimistic way is expected; (iii) those
messages already delivered, but in disorder, force the action already executed to be rolled back.
This optimistic way of proceeding is efficient when the coincidence between the optimistic
order and that produced by the TO-R-Broadcast protocol coincide most of the time. Pedone
uses this optimistic technique in transactional systems [18, 12], and Sousa provides a solution
in Wide Area Networks [7].

In general, designers of data replication systems must be careful in choosing the com-
munication environment and geographic area where TO-R-Broadcast protocols have to be
deployed. From a theoretical point of view, this area has to be a region with partial synchrony
(to guarantee message delivery), which in practice translates into regions where most of the
time their behavior is synchronous. Thus, it is reasonable to deploy these protocols on a LAN
or a Data Center (DC) over a specific geographic region (from those data centers offered by
infrastructure providers).

In this paper, we address the design of an R-Broadcast protocol in which processes are
aware that some messages are delivered in order and that the local (total) orders, that are
established by these ordered deliveries, are compatible among different processes. We call this
protocol Approximate Order Reliable Broadcast (AOR-Broadcast). Since not all messages
are delivered in the same (total) order in all the processes, it is possible its implementation
in an asynchronous distributed system with arbitrary number of crash failures as opposed
to what happens with TO-R-Broadcast or Optimistic TO-R-Broadcast protocols. On the
other hand, in the same practical distributed environments where it is possible to implement
TO-R-Broadcast, we analyze the amount of messages delivered in the same order among
processes. This measure establishes the degree of approximation of the AOR-Broadcast with
respect to an ideal TO-R-Broadcast. In addition, we propose adaptation mechanisms so that
the amount of ordered messages delivered at each process may be increased in these practical
environments.

The rest of the paper is organized as follows. Section 2 defines and specifies AOR-
Broadcast. Section 3 provides a basic algorithm that complies with that specification and
experimentally evaluates its throughput and approximate order measure. Section 4 proposes
a second algorithm that dynamically adapts message management in order to increase totally
ordered delivery and compares its performance with that of the basic algorithm. In Section
5, we outline a possible impossibility result related with the specification of AOR-Broadcast.
Finally, Section 6 concludes the paper.

Jornadas de Concurrencia 2022 3

2 Specification of AOR-Broadcast

The Approximate Order Reliable Broadcast protocol (AOR-Broadcast) proposed in this
paper allows a process to broadcast messages, and to deliver messages in two different ways:
u-deliver(.) and o-deliver(.). Both types, u-deliver(.) and o-deliver(.), are delivery events that
satisfy the common properties of a simple Reliable Broadcast [10, 19]. However, o-deliver(.)
events are intended to indicate the process that the set of messages delivered in this way
satisfy a simple local (total) order relation1. Local order relations of o-deliver events in
different processes are compatible. Basically, if two different processes pi and pj o-deliver the
same pair of messages m and m′, then pi o-delivers m before m′ if and only if pj o-delivers
m before m′. Let us observe that this property is the common safety property used in the
TO-R-Broadcast [10] specification. In our case, this property is applied only to o-deliver
messages. In the following, we provide a more formal specification of AOR-Broadcast.

2.1 Distributed system model
Let us consider a distributed system that is composed of a set of N ≥ 2 asynchronous
sequential processes. Processes are identified by pi (or simply by the number i) with i ∈ P ,
where P = {1, 2..., N}. Processes are asynchronous and sequential, i.e., each process proceeds
at its own speed. Each process behaves correctly according to its local algorithm until it
possibly crashes. After a crash event, a process stops its execution. A process is correct if it
never crashes, otherwise it is faulty. We assume that there is at least one correct process
in every execution of the system, i.e., the possible number of processes that may fail in an
execution is at most N − 1.

Processes may communicate among them by sending and receiving messages over asyn-
chronous reliable channels. However, in order to simplify the presentation, we assume that
the distributed system is equipped with a R-Broadcast protocol. In fact, R-Broadcast can
be implemented in the considered distributed system (see some implementations in [10, 19]).
The basic R-Broadcast protocol provides the operation broadcast(m). This operation is
executed by a process to send m to all participant processes. When the event deliver(m) is
triggered at a process, it delivers m to that process. The R-Broadcast is characterized by the
following three properties [19], where it is assumed that all broadcast messages are different2:

(B1) Validity. If a process delivers a message m, then m was broadcast by a process.
(B2) Integrity. A message is delivered at most once by each process.
(B3) Termination. If a correct process (a) broadcasts a message m or (b) delivers a
message m, then each correct process eventually delivers m.

In the previous specification, we have followed the common terminology: (i) when a
process invokes the operation broadcast(m), we say that it ’broadcasts a message m’; and
(ii) when deliver(m) is triggered at a process, we say that it ’delivers m’.

In the proposed distributed system, there is not a notion of global true-time that processes
are able to utilize in their algorithms: each process may only use their local clock and different
local clocks are not synchronized. However, we assume that there exists an omniscient observer
that can specify or derive some properties of the system by using a real time notion. For

1 This notion is more simple than the local order property used to show that fifo+local order is equivalent
to causal order [10].

2 Messages are considered unique without any other assumption, i.e., for two different broadcast operations
sending m and m′, we only know that m 6= m′.

4 Approximate Order Reliable Broadcast

example, for each process pi, let us define Di(τ) as the set of messages delivered by pi up
to real time τ via the R-Broadcast protocol. By (B3), if a correct process pi has delivered
Di(τ) up to time τ , then there is a time τ ′ ≥ τ such that for any other correct process pj ,
Dj(τ ′) ⊇ Di(τ) holds. This is the reason to say informally that correct processes deliver the
same set of messages using a R-Broadcast protocol.

2.2 Definition of AOR-Broadcast
AOR-Broadcast provides processes with the operation AO-broadcast(m) to broadcast a
message m, and two types of delivery events, u-deliver(.) and o-deliver(.). Again, all
messages that are AO-broadcast are different. When u-deliver(m) or o-deliver(m) have been
triggered at process pi, in both cases, we say that pi ’delivers m’, and we use the binary
classification given by the letters ’u’ or ’o’ to specify the particular type of event. With this
simple description, the AOR-Broadcast must satisfy the properties of validity, integrity and
termination for any deliver event (see properties (B1) to (B3) above) of a R-Broadcast.

Let us denote by Oi(τ) (Ui(τ)) the set of o-delivered (u-delivered resp.) messages by a
process pi up to time τ . The set of all delivered messages at pi up to τ isDi(τ) = Oi(τ)∪Ui(τ).
Obviously, by (B2), at any τ and τ ′ times, Oi(τ) ∩ Ui(τ ′) = ∅, i.e., these sets are disjoint
at any time. Here, we establish the main difference between these sets at process pi. For
any time τ ≥ 0, each set Oi(τ) has associated a total order relation, denoted <

Oi
, that is

defined as follows: for any m, m′ ∈ Oi(τ), m <
Oi
m′ if and only if o-deliver(m) happens

before o-deliver(m′) at process pi. Each relation <
Oi

is a local relation for each process pi.
However, we establish that these local relations are compatible. Thus, AOR-Broadcast must
satisfy the property:

(AOB4) Approximate Order. If two processes (correct or faulty) pi and pj satisfy
{m,m′} ⊆ Oi(τ) ∩Oj(τ) at time τ then m <

Oi
m′ ⇔ m <

Oj
m′

A simple example of the AOR-Broadcast delivery guarantees appears in Figure 1.

p1

p2

p3

p4

AO-broadcast(m1)

AO-broadcast(m2)

AO-broadcast(m31) AO-broadcast(m32)

AO-broadcast(m4)

x

x

o-deliver o-deliver o-deliver o-deliver

o-deliver o-deliver

o-deliver

o-deliver o-deliver

u-deliver u-deliver

m2 m32 m1 m4

m2 m4 m1

m2

m1 m4

m32

Figure 1 An example of the AOR-Broadcast delivery guarantees

In this example, processes p1 and p2 are correct while p3 and p4 are faulty. From
the perspective of the properties (B1)-(B3), the correct processes deliver the same set of
messages D while each faulty process deliver a subset of D. Let us observe that p3 delivers

Jornadas de Concurrencia 2022 5

none of the messages m31 and m32 that it has broadcast but m32 that has been sent after
m31 is delivered by the correct processes while m31 is not. With respect to the property
(AOB4): O1 ∩O2 = {m32,m4}. These o-delivered messages satisfy m32 <

O1
m4 at p1 and

m32 <
O2
m4 at p2. In the faulty process p4, O1 ∩O4 = {m1,m4}. Again, m1 <

O1
m4 at p1

and m1 <
O4
m4 at p4. The execution satisfies the approximate order property that applies

to o-delivered messages only.
Let us observe that the previous guarantees for an AOR-Broadcast protocol do not

exclude the possibility of constructing trivial algorithms satisfying them; e.g., a reliable
broadcast protocol that only produces u-deliver(.) events. Given an execution α that satisfies
the previous guarantees, we can define the correct process in α by the set of non-faulty
processes in α denoted by Correct(α). In order to exclude trivial solutions, AOR-Broadcast
must guarantee the following property:

(AOB5) Non triviality. For any k ≥ 0 and any subset S ⊆ 2P with S 6= ∅, there
exists an execution α and a time τ such that S = Correct(α) and k = ‖

⋂
i∈S Oi(τ)‖

This guarantee establishes that there are executions that provide some amount of ordered
messages via o-deliver(.) events and in an extreme case, all messages may be ordered for all
the correct processes by the Approximate Order property. In addition, we can measure the
amount of ordered messages in a given execution up to time τ by the equation,

Approximate Order Measure: AO(τ) =
‖

⋂
i∈P Oi(τ)‖

‖
⋃
i∈P Di(τ)‖ (1)

3 An implementation of AOR-Broadcast

Let us provide an algorithm to solve the AOR-Broadcast on top of a R-Broadcast protocol.
In the previous specification (section 2), property (AOB4) establishes that for two different
processes i and j the local (total) orders <

Oi
and <

Oj
have to be compatible between them

when cardinal ‖Oi ∩Oj‖ is greater than or equal to 2 in an execution. The simplest way to
obtain this compatibility is that all delivered messages be comparable using a totally ordered
information associated to the messages. As any timestamp mechanism (e.g., Lamport’s
logical clocks [14]) provides a total order in the set of the events of an execution, the
proposed solution is based on a timestamp mechanism. In addition, the obtained algorithm
is non-blocking. Algorithm 1 uses a variable last_ets to store the timestamp of the latest
o-delivered message. In that case, the code (in line 14) compares the timestamp of next
delivered message by the underlaying R-Broadcast in order to decide if it is greater than the
last_ets. If this happens the message is o-delivered and the last_ets variable is updated
(lines 17-18). Otherwise the message is u-delivered (line 15). This simple idea assures that for
each process i, <

Oi
is a total order and as all messages are totally ordered by the timestamps,

these local orders are compatible between them.
Notes about correctness of Algorithm 1. Let us observe that the associated operations for
timestamps (update_ts(.) and update_ts-rcv(.)) assure the common property: e hb f ⇒
e.ts < f.ts for two events e and f where hb denotes the happen before relation. The correctness
of Algorithm 1, properties (B1) to (B3) of AOR-Broadcast, relies on the properties (B1)
to (B3) of the underlaying R-Broadcast protocol. Since every AO-broadcast message is
different then AO-broadcasti(m) happens only once in an execution for each message m.
Thus broadcasti(〈m, ets〉) happens only once in an execution for each message m. Then,
there are not two different occurrences of deliverj(〈m,mets〉) and deliverk(〈m,mets′〉) with
mets 6= mets′ for the same message m in an execution. In addition, lines 14-19 assure that

6 Approximate Order Reliable Broadcast

Algorithm 1 AOR-Broadcast Algorithm. Code for process pi

1: Variables
2: ts := ⊥ . timestmap. ⊥ denotes its minimum value.
3: ets := (ts, i) . extended timestamp: a pair (timestamp, origin)
4: last_ets := (ts, 0) . extendend timestamp of the last o-delivered message
5:
6: operation AO-broadcast(m)
7: update_ts()
8: ets := (ts, i)
9: broadcast(〈m, ets〉)
10: end operation
11:
12: when 〈m, mets〉 is delivered . delivered by the underlaying reliable broadcast
13: update_ts-rcv(mets.ts) . update timestamp of pi

14: if mets ≤ last_ets
15: u-deliver(m)
16: else . mets > last_ets
17: last_ets := mets
18: o-deliver(m)
19: end if-else
20: end when

o-deliveri(m) is exclusive with respect to u-deliveri(m). Thus, Oi(τ) ∩ Ui(τ) = ∅ for any
execution and time τ . These previous observations allow us to conclude that properties (B1)
to (B3) of AOR-Broadcast are fulfilled by Algorithm 1 because (B1) to (B3) are satisfied
by the underlaying R-Broadcast.

Property (AOB4) may be proved by contradiction. To this end, let us note that in
each process i, (a) last_etsi satisfies that is greater or equal to the value mets of the last
o-delivered message 〈m,mets〉; and (b) the set of extended timestamps (see ets in line 3) is a
totally ordered set. Then, let us consider as the base hypothesis that {m,m′} ⊆ Oi(τ)∩Oj(τ)
at time τ , and w.l.o.g. m <

Oi
m′ in pi, but in pj : m′ <Oj

m. Then, m <
Oi
m′ implies that

metsm < metsm′ at pi. Because of (b), metsm < metsm′ will also hold at pj . So, if m was
delivered before m′ at pj , then m <

Oj
m′ and this contradicts the base hypothesis. However,

it may also happen that m′ be delivered before m at pj . If that arises, at m delivery to pj , its
metsm will be lower than last_ets (note that the latter is greater or equal to metsm′ , since
pj has already delivered m′). This makes true the condition assessed at line 14 and compels
to u-deliver m. Again, this contradicts the base hypothesis, since m was not o-delivered in
this second case. Therefore, in both cases, m′ <

Oj
m was false, and a contradiction has been

reached. Thus, m <
Oi
m′ ∧ m <

Oj
m′ holds and (AOB4) is proven.

The Non Triviality Property (AOB5) is proven by induction on k ≥ 0. Let us assume an
execution α = Φ0π1Φ1π2...Φk−1πkΦk... 3. Let S be the nonempty subset of correct processes
in α. Let us assume that for some index τ , k = ‖

⋂
i∈S Oi(τ)‖ holds. Then, we delete from

α every action πτ ′ with τ ′ > τ . The new execution β is a prefix of α and, thus, it is also
an execution. Then, we build β′ = β AO-broadcastp(m) Φτ+1 where process p takes the
maximum value of last_etsp among the processes in S. As AO-broadcastp(m) is an input
operation, β′ is a valid execution. Since p is correct and etsp ≥ last_etsp, 〈m, etsp〉 may be
o-delivered by all the correct processes without violating that the system is asynchronous.

3 We use the distributed model proposed in Chp. 7 of the book of Attiya and Welch [1].

Jornadas de Concurrencia 2022 7

Therefore, there exists an execution such that k + 1 = ‖
⋂
i∈S Oi(τ ′)‖ for some τ ′.

3.1 Experimental evaluation
As we have indicated in the introduction, we are going to test the AOR-Broadcast protocol
(Algorithm 1) in a practical distributed environment where we could implement a TO-
R-Broadcast. Algorithm 1 has been implemented in NodeJS (version v10.19.0). For the
communication among processes we have used the ZeroMQ [11] library (version 5.2.8). The
protocol has been deployed in an Amazon data center. That deployment uses nine T2micro
VMs, in three availability zones, with three VMs per zone. The latency between machines in
the same zone is approximately 0.51-0.53 ms and between different zones is 0.74-0.81 ms.
On the other hand, the timestamp mechanism used in the implementation of the algorithm
is HLC [13] (see Appendix A for further details). Machines are synchronized via NTP. Each
client broadcasts messages using the protocol.

In the tests, when the client delivers its last broadcast message, it awaits a thinking time
and then broadcasts a new message again. About 10000 messages have been broadcast in
the tests and all processes are correct. In this way, we measure the capacity of the protocol,
i.e., its throughput: the number of delivered messages per second. The rest of measures are
shown in Table 1 and Table 2.

Thinking Time 0 ms
Process Ordered Oi Throughputi

p1 6872
10000 (68.72%) 10000

14,692s
(680.64 mgs/s)

p2 6641
10000 (66.41%) 10000

14,628s
(683.62 mgs/s)

p3 6270
10000 (62.70%) 10000

14,640s
(683.06 mgs/s)

p4 7241
10000 (72.41%) 10000

14,638s
(683.15 mgs/s)

p5 7776
10000 (77.76%) 10000

14,655s
(682.36 mgs/s)

p6 8227
10000 (82.27%) 10000

14,663s
(681.99 mgs/s)

p7 6738
10000 (67.38%) 10000

14,599s
(684.98 mgs/s)

p8 7809
10000 (78.09%) 10000

14,671s
(681,62 mgs/s)

p9 6721
10000 (67.21%) 10000

14,675s
(681,43 mgs/s)

Table 1 Percentage of o-delivered messages at each process using Algorithm 1. Process throughput,
when Thinking Time is 0ms, is at the third column. The Approximate Order measure, AO (eq. 1),
is 59.87%. Average throughput is 682.43 mgs/s with 1.23 of variance.

Table 1 shows that when the tests introduce no thinking time, then the maximum
achievable throughput is slightly greater than 680 msg/s. In that case, with no sending pause,
the approximate order measure does not exceed 60%. That means that only fewer than 60%
of the broadcast messages have been delivered in total order in all participating processes.

If longer pauses are introduced between successive broadcast actions at each sender (i.e.
longer thinking times) then the probability of unordered delivery decreases, as illustrated
in Table 2, alghough the obtained throughput also lessens. This suggests that some inter-
message pause is needed in order to increase the approximate order measure. However, that
pause may be also introduced at reception time (instead of at sending time), before messages
are delivered. At reception time, the algorithm may also sort those received buffered messages
according to their intended order, as proposed in other previous works [17, 16]. In our case,
that order is set by the timestamp included in every message. Let us consider that approach
in an adaptive revision of Algorithm 1.

8 Approximate Order Reliable Broadcast

Thinking Time [mini{‖Oi‖},maxi{‖Oi‖}] AO (eq. 1) (Throughputi; σ)
0 ms [62, 70%, 82, 27%] 59,87% (682,43 mgs/s; 1,23)
1 ms [63, 49%, 82, 64%] 62,60% (680,91 mgs/s; 1,54)
2 ms [64, 67%, 83, 10%] 62,66% (678,41 mgs/s; 1,71)
5 ms [68, 12%, 84, 91%] 66,07% (674,41 mgs/s; 1,41)
10 ms [77, 79%, 91, 48%] 75,68% (594,96 mgs/s; 0,83)
15 ms [89, 74%, 96, 01%] 87,94% (481,09 mgs/s; 0,90)

Table 2 Minimum and maximum percentage of o-delivered messages using Algorithm 1. The
Approximate Order measure is in the third column. Process thinking time varies from 0ms to 15ms.
Average throughput and its variance are in the fourth column.

4 An adaptive implementation of AOR-Broadcast

In the practical environment considered in subsection 3.1, process clocks are synchronized
by the NTP protocol. We have also used the HLC timestamp mechanism [13] in lieu of
physical/NTP clocks. The practical usage of HLC requires a rough synchronization among
clocks. Thus, we assume that there are not two events e and f in the system such that
e hb f and e.pt > f.pt + ε where pt is the physical clock of each event at its node, and ε

denotes the clock uncertainty. This uncertainty quantity is approximately twice the offset of
NTP. The idea to improve the Approximate Order measure (eq. (1)) is to improve ‖Oi‖ for
each process. The main idea comes from the (Uniform) Local-Time ∆-Timeliness property
indicated in [10]: (LT) There is a known constant ∆ such that no process pi delivers a
message m after local time ts(m) + ∆ on pi’s clock (where ts(m) denotes the local time at
which m was broadcast according to the sender’s local clock). Hadzilacos and Toueg show that
if this property holds in the system then it is possible to obtain the Total Order property for
a R-Broadcast. Since this is not possible in our system, the simplest way to improve the
order is to estimate ∆ and to delay the o-deliver() event of ordered messages some δ time for
augmenting the possibility that future messages will be o-delivered.

The code of Algorithm 2 is straightforward. Function g1() in line 19 updates ∆max or
∆min in comparison with the new ∆ estimation now−mets.ts.l where now is the time where
〈m, mets〉 is received and mets.ts.l is the clock’s value of the timestamp when m was broadcast.
Messages to be o-delivered are stored in timestamp order in the Rec[] array variable (line
23).

Message delivery via the o-deliver() event is performed in the Task indicated on lines
28-40 of the Algorithm 2. This Task is repeated periodically from the delay δ calculated
by the function g2() in line 30. The Task calculates from the messages in Rec[], which are
previously ordered by its timestamp on line 23, those that can be delivered when Task is
executed. In particular, a message in Rec[] can be o-delivered when (now −Rec[p].pt) ≥ δ)
(line 33), i.e., it has rested more than δ ms in Rec[] and all previous messages in Rec[]
have been o-delivered. As we can see in line 36, all messages that can be o-delivered are
delivered together in a single o-deliver() event. Once delivered, variables last_ets and Rec[]
are updated respectively (lines 37-38).

The rule for calculating the delay imposed on the messages in Rec[] is the function g2()
in line 30 of Algorithm 2. This is a simple Autoregressive Moving Average that is calculated
by the expression,

δ(τ + 1) := θ · (∆max −∆min) + (1− θ) · δ(τ) (2)

Jornadas de Concurrencia 2022 9

Algorithm 2 Adaptive AOR-Broadcast Algorithm. Code for process pi

1: Variables
2: now . a read-only variable. It contains physical time via NTP protocol
3: ts := (0, 0) . timestmap, a pair (l, c). Updated via HLC procedures Alg. 3
4: ets := (ts, i) . extended timestamp: a pair (timestamp, origin)
5: last_ets := ((0, 0), 0) . extendend timestamp of the last o-delivered message
6: Rec := [] . an array of tuples 〈(m, mets), pt〉 where m is a message, mets is its extended

timestamp and pt is the time when m was received
7: ∆max := 0
8: ∆min := 0 . variables for approximating ∆-Timeliness property
9: δ := 1 . adaptive delay, initially 1 ms. Maximum time residence of a message in Rec
10:
11: operation AO-broadcast(m)
12: update_ts()
13: ets := (ts, i)
14: broadcast(〈m, ets〉)
15: end operation
16:
17: when 〈m, mets〉 is delivered . delivered by the underlaying reliable broadcast
18: update_ts-rcv(mets.ts) . update timestamp of pi

19: (∆max,∆min) := g1(now − mets.ts.l, (∆max,∆min))
20: if mets ≤ last_ets
21: u-deliver(m)
22: else . mets > last_ets
23: Rec := insert(Rec, 〈(m, mets), now〉) . Rec is ordered by extended timestamps
24: end if-else
25: end when
26:
27: Task::
28: repeat each max(1, δ/2) time
29: update_ts()
30: δ := g2(∆max −∆min, δ)
31: Let L := Rec.length . Length of Rec array, indexed by 1..L
32:
33: Let pmax := max{p : 1 ≤ p ≤ L ∧ (∀j : 1 ≤ j ≤ p : (now −Rec[p].pt) ≥ δ)}
34: . particular case: pmax = 0 when max(∅)
35: if pmax > 0 then
36: o-deliver(Rec[1..pmax])
37: last_ets := Rec[pmax].mets
38: Rec := delete(Rec, Rec[1..pmax])
39: end if
40: end repeat

10 Approximate Order Reliable Broadcast

where θ is a parameter in the range (0.0, 1.0).
In the next section, we present the experimental results of this adaptive algorithm.

4.1 Experimental evaluation
The experimental study of the Adaptive AOR-Broadcast Algorithm 2 is carried out under
the same conditions that have been established in the subsection 3.1 for the AOR-Broadcast
Algorithm 1. As we can see in Table 3 and Table 4, the improvement in the delivery of
messages by o-deliver() events is very significant. In the extreme case, when thinking time of
processes is 0 ms, the Approximate Order measurement goes from 59.87% to 91.62%. In the
test carried out, of 10002 messages delivered, 9164 messages are delivered in the same order
in all processes and 838 messages are delivered in different order. In the case of 5 ms (Table
4, we go from obtaining 66.07% to 99.01% of messages delivered in order with the adaptive
algorithm. An improvement of 33.23% is obtained. For thinking times greater than 5 ms,
the measurement of the Approximate Order exceeds 99%.Table 4 shows that throughput of
each test is very similar using both algorithms.

Thinking Time 0 ms
Process Ordered Oi Throughputi
p1 9726

10002 (97.24%) 10002
12,596s

(794.06 mgs/s)
p2 9758

10002 (97.56%) 10002
12,583s

(794.88 mgs/s)
p3 9803

10001 (98.02%) 10001
12,535s

(797.85 mgs/s)
p4 9745

10002 (97.43%) 10002
12,582s

(794.95 mgs/s)
p5 9838

10001 (98.37%) 10001
12,592s

(794.23 mgs/s)
p6 9691

10005 (96.86%) 10005
12,625s

(792.48 mgs/s)
p7 9534

10004 (95.30%) 10004
12,572s

(795.74 mgs/s)
p8 9702

10004 (96.98%) 10004
12,650s

(790,83 mgs/s)
p9 9347

10004 (93.43%) 10004
12,518s

(799,17 mgs/s)

Table 3 Percentage of o-delivered messages at each process using the Adaptive AOR-Broadcast
Algorithm 2.

Thinking Time [mini{‖Oi‖},maxi{‖Oi‖}] AO (eq. 1) (Throughputi; σ)
0 ms [93, 43%, 98, 37%] 91,62% (794,91 mgs/s; 2,38)
1 ms [96, 19%, 98, 80%] 94,26% (758,60 mgs/s; 3,30)
2 ms [97, 35%, 99, 33%] 95,69% (751,07 mgs/s; 3,03)
5 ms [99, 30%, 99, 71%] 99,01% (665,35 mgs/s; 1,92)
10 ms [99, 59%, 99, 78%] 99,30% (535,00 mgs/s; 1,65)
15 ms [99, 72%, 99, 89%] 99,64% (435,03 mgs/s; 0,79)

Table 4 Results obtained using the Adaptive AOR-Broadcast Algorithm 2.

In figure 2, we can see how the delay (δ) in the delivery of messages is adapted in the
test. In this test, the thinking time is 10 ms. Figure 2 shows the behavior of the process
p3. The delay is bounded between 1 ms and 4.7 ms. This figure also shows that the number
of ordered messages, which are delivered in each o-deliver() event, is bounded between 1
message and 6 messages.

Jornadas de Concurrencia 2022 11

Figure 2 An example of how delta evolves using the Adaptive AOR-Broadcast Algorithm.

In this initial experimentation, obtained results confirm that the adaptive algorithm offers
good productivity and that the number of messages delivered in an unordered way can be
kept below 1% even when the processes are deployed in different zones (buildings) of a data
center.

5 A naive impossibility result

In Theory of Distributed Algorithms, there are some simple impossibility results, e.g., it is
impossible to solve the leader election problem in a ring if processes are anonymous [1]. Other
impossibility results are related to the limits on the number of messages to solve a problem,
e.g., it is impossible to solve the leader election problem in a ring with n processes using a
distributed algorithm with message complexity less than Ω(nLog(n)) [1]. In the considered
distributed system model (subsection 2.1), it is impossible to solve the consensus problem by
the well-known FLP impossibility result [9]. The equivalence of the Total Order Reliable
Broadcast and consensus [10] makes the former problem also impossible. The specification of
AOR-Broadcast is very weak in comparison with TO-R-Broadcast. In addition, we know that
other reliable broadcast related problems, e.g., FIFO-R-Broadcast and CO-R-Broadcast, have
algorithmic solutions that are built on top of a simple R-Broadcast protocol. In particular, a
non-blocking solution exists for CO-R-Broadcast on top of FIFO-R-Broadcast [10][19]. Our
question is: Is it possible to build an non-blocking AOR-Broadcast algorithm on top of a
R-Broadcast algorithm without the existence of a total order relation on the set of delivered
messages?. What the previous question indicates is the need for the broadcast messages
(and the possible additional information attached to them) to be completely ordered by a
pre-established total order. We attempt to explain this informal question in a more formal
way.

Let us assume that there is a non-blocking algorithm that implements AOR-Broadcast on
top of a R-Broadcast protocol. When a message m is AO-broadcast by a process i, at some
point on the code of this operation, it has to execute broadcasti(〈m, sbm[i]〉), where sbm[i] is
the state of process i at this point of the execution. When a process j o-delivers (or u-delivers)
m is because deliverj(〈m, sbm[i]〉) has been received via the underlaying R-Broadcast. As the
protocol is non-blocking, decision about this message 〈m, sbm[i]〉 is taken at the state sdm[j]

12 Approximate Order Reliable Broadcast

when deliverj(〈m, sbm[i]〉) happens. Let us observe that sbm[i] is the maximum information
that can be attached to a message. Thus, a non-blocking decision is a deterministic function
dec(sdm[j], 〈m, sbm[i]〉) ∈ {o, u} (indexes dm and bm satisfy bm < dm). What we claim
is that for the possible set {〈m, sbm[i]〉} of (informed) messages in every execution, there
exists a total order relation ≺ such that, for each process p, <

Op
⊆≺ holds. We are currently

working on offering a convincing proof of this claim.

6 Conclusions

Algorithms that provide a reliable broadcast service may be easily extended with some kind
of (logical) timestamp in order to check whether their participating nodes deliver the intended
messages in total order or not. Such totally ordered delivery is easily enhanced when senders
introduce short pauses between consecutive broadcast actions.

The proposed Approximate (total) Order Reliable Broadcast (AOR-Broadcast), in its
adaptive variant, combines those mechanisms with an adaptable short pause between the
receiving and the delivery stages, able to highly increase the percentage of messages delivered
in total order among all processes. This adaptive pause at the receiving side introduces two
benefits. Firstly, when both pauses are short (i.e. shorter than 3 ms), their combined effect on
throughput is positive. Secondly, the length of the receiving pause may be substracted from
the basic sending pause with better effect on the percentage of messages globally delivered in
total order. Thus, AOR-Broadcast has been able to guarantee total-order delivery for more
than 99% of the intended messages, while a basic reliable broadcast algorithm in those same
scenarios did not exceed 60% of total-order delivery.

References
1 Hagit Attiya and Jennifer L. Welch. Distributed Computing: Fundamentals, Simulations and

Advanced Topics. McGraw-Hill, 1998. ISBN 978-0077093525.
2 Peter Bailis and Ali Ghodsi. Eventual consistency today: limitations, extensions, and beyond.

Commun. ACM, 56(5):55–63, 2013. doi:10.1145/2447976.2447992.
3 Kenneth P. Birman and Thomas A. Joseph. Reliable communication in the presence of failures.

ACM Trans. Comput. Syst., 5(1):47–76, 1987. doi:10.1145/7351.7478.
4 Eric A. Brewer. Pushing the CAP: Strategies for consistency and availability. Computer,

45(2):23–29, 2012. doi:10.1109/MC.2012.37.
5 Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors for reliable distributed

systems. J. ACM, 43(2):225–267, 1996. doi:10.1145/226643.226647.
6 Jo-Mei Chang and Nicholas F. Maxemchuk. Reliable broadcast protocols. ACM Trans. Comput.

Syst., 2(3):251–273, 1984. doi:10.1145/989.357400.
7 António Luís Pinto Ferreira de Sousa, José Pereira, Francisco Moura, and Rui Carlos Oliveira.

Optimistic total order in wide area networks. In 21st Symposium on Reliable Distributed
Systems (SRDS), pages 190–199, Osaka, Japan, 2002. IEEE Computer Society. doi:10.1109/
RELDIS.2002.1180188.

8 Xavier Défago, André Schiper, and Péter Urbán. Total order broadcast and multicast
algorithms: Taxonomy and survey. ACM Comput. Surv., 36(4):372–421, 2004. doi:10.1145/
1041680.1041682.

9 Michael J. Fischer, Nancy A. Lynch, and Mike Paterson. Impossibility of distributed consensus
with one faulty process. J. ACM, 32(2):374–382, 1985. doi:10.1145/3149.214121.

10 Vassos Hadzilacos and Sam Toueg. A modular approach to fault-tolerant broadcasts and
related problems. Technical report, Cornell University, Ithaca, New York, USA, 1994.

11 Pieter Hintjens. ZeroMQ: Messaging for Many Applications. O’Reilly Media, Inc., 2013.

https://doi.org/10.1145/2447976.2447992
https://doi.org/10.1145/7351.7478
https://doi.org/10.1109/MC.2012.37
https://doi.org/10.1145/226643.226647
https://doi.org/10.1145/989.357400
https://doi.org/10.1109/RELDIS.2002.1180188
https://doi.org/10.1109/RELDIS.2002.1180188
https://doi.org/10.1145/1041680.1041682
https://doi.org/10.1145/1041680.1041682
https://doi.org/10.1145/3149.214121

Jornadas de Concurrencia 2022 13

12 Bettina Kemme, Fernando Pedone, Gustavo Alonso, and André Schiper. Processing trans-
actions over optimistic atomic broadcast protocols. In 19th International Conference on
Distributed Computing Systems (ICDCS), pages 424–431, Austin, TX, USA, 1999. IEEE
Computer Society. doi:10.1109/ICDCS.1999.776544.

13 Sandeep S. Kulkarni, Murat Demirbas, Deepak Madappa, Bharadwaj Avva, and Marcelo
Leone. Logical physical clocks. In 18th International Conference on Principles of Distributed
Systems (OPODIS), volume 8878 of Lecture Notes in Computer Science, pages 17–32, Cortina
d’Ampezzo, Italy, 2014. Springer. doi:10.1007/978-3-319-14472-6_2.

14 Leslie Lamport. Time, clocks, and the ordering of events in a distributed system. Commun.
ACM, 21(7):558–565, 1978. doi:10.1145/359545.359563.

15 Carlo Marchetti, Roberto Baldoni, Sara Tucci Piergiovanni, and Antonino Virgillito. Fully
distributed three-tier active software replication. IEEE Trans. Parallel Distributed Syst.,
17(7):633–645, 2006. doi:10.1109/TPDS.2006.89.

16 Emili Miedes and Francesc D. Muñoz-Escoí. Improving the benefits of multicast prioritization
algorithms. J. Supercomput., 68(3):1280–1301, 2014. doi:10.1007/s11227-014-1087-z.

17 Akihito Nakamura and Makoto Takizawa. Priority-based total and semi-total ordering
broadcast protocols. In 12th International Conference on Distributed Computing Systems
(ICDCS), pages 178–185, Yokohama, Japan, June 1992. IEEE Computer Society. doi:
10.1109/ICDCS.1992.235041.

18 Fernando Pedone and André Schiper. Optimistic atomic broadcast. In Shay Kutten, editor, 12th
International Symposium on Distributed Computing (DISC), volume 1499 of Lecture Notes in
Computer Science, pages 318–332, Andros, Greece, 1998. Springer. doi:10.1007/BFb0056492.

19 Michel Raynal. Communication and Agreement Abstractions for Fault-Tolerant Asynchronous
Distributed Systems. Synthesis Lectures on Distributed Computing Theory. Morgan & Claypool
Publishers, 2010. doi:10.2200/S00236ED1V01Y201004DCT002.

20 Xin Zhao and Philipp Haller. Replicated data types that unify eventual consistency and
observable atomic consistency. J. Log. Algebraic Methods Program., 114:100561, 2020. doi:
10.1016/j.jlamp.2020.100561.

A Hybrid Logical Clocks

In the proposed distributed system model, there is no true time clock that processes can use.
Each process can access a physical clock on the machine where it runs. From a practical
point of view we consider that the machines are synchronized using the NTP (Network Time
Protocol) protocol. Since perfect synchronization of clocks is not possible, we will assume
that there are uncertainty intervals associated with the clocks. In this practical scenario, we
can use the timestamp mechanism proposed by [13] called HLC (Hybrid Logical Clock). The
advantages of this mechanism compared to others are (a) its good ability to tolerate common
NTP divergences; (b) it is self-stabilized; and (c) it is resistant to possible corruptions of
clock variables. To understand some of the properties offered by HLC we recall here the
notion of causal relationship between events. An event e occurs before f , denoted e hb f ,
(i) if e and f are of the same process and e occurs before f ; or (ii) e is a message sending
event and f is its corresponding message receiving event. The complete relation hb is the
transitive closure of (i) and (ii) for all events. Two events are concurrent, denoted e||f , if
and only if, ¬(e hb f) ∧ ¬(e hb f).

In the HLC algorithm, Algorithm 3, each event has a pair of (l, c) values associated
with it. The value l corresponds to a physical clock, pt, and the value of c corresponds
to an integer to capture causality when the l values of events are equal. Basically l is
updated with the physical clock, and in case of a tie c is incremented. In what follows,
we assume that for an event e its associated pair is (l.e, c.e). The physical value of the

https://doi.org/10.1109/ICDCS.1999.776544
https://doi.org/10.1007/978-3-319-14472-6_2
https://doi.org/10.1145/359545.359563
https://doi.org/10.1109/TPDS.2006.89
https://doi.org/10.1007/s11227-014-1087-z
https://doi.org/10.1109/ICDCS.1992.235041
https://doi.org/10.1109/ICDCS.1992.235041
https://doi.org/10.1007/BFb0056492
https://doi.org/10.2200/S00236ED1V01Y201004DCT002
https://doi.org/10.1016/j.jlamp.2020.100561
https://doi.org/10.1016/j.jlamp.2020.100561

14 Approximate Order Reliable Broadcast

clock when event e happens is denoted, pt.e. On the other hand, the relation < is stated as
(a, b) < (c, d)⇔ (a < c) ∨ ((a = c) ∧ (b < d)).

AS1. Synchronization Assumption of Physical Clocks: There are no two events e and f in
the distributed system such that e hb f and pt.e > pt.f + ε. Where ε denotes the uncertainty
of clock synchronization (approximately twice the offset value of the NTP).

Under the previous assumption, HLC timestamp mechanism provides the following
properties [13]:

HLC1 Directional causality. For two events e and f :
e hb f ⇒ (l.e, c.e) < (l.f, c.f).
HLC2 For any event f : l.f ≥ pt.f .
HLC3 l.f denotes the maximum clock value of which the event f is aware. For any
event f : l.f > pt.f ⇒ (∃g : g hb f ∧ pt.g = l.f)
HLC4 l is bounded. For any event f : |l.f − pt.f | ≤ ε
HLC5 For any event f :
c.f = k ∧ k > 0⇒
∃g1, g2, ..., gk : ((∀j : 1 ≤ j < k : gi hb gi+1)
∧ (∀j : 1 ≤ j ≤ k : l.gi = l.f) ∧ gk hb f)

HLC6 c is bounded. For any event f : c.f ≤ ‖{g : g hb f ∧ l.g = l.f}‖
HLC7 c is bounded. For any event f : c.f ≤ N × (ε+ 1)

Algorithm 3 HLC algorithm. Code for process pi

1: Variables
2: pt . a read-only variable. It contains physical time via NTP protocol
3: ts := (0, 0) . timestmap, a pair (l, c). Updated via HLC procedures
4:
5: procedure update_ts() . send or local event
6: Let l′ := ts.l . the previous logical time
7: ts.l := max(l′, pt) . the new value of logical time ts.l
8: if ts.l = l′

9: ts.c := ts.c+ 1
10: else
11: ts.c := 0
12: end if-else
13: end procedure
14:
15: procedure update_ts-rcv((lm, cm)) . receive event of message m and timestamp (lm, cm)
16: Let l′ := ts.l . the previous logical time
17: ts.l := max(l′, lm, pt) . the new value of logical time ts.l
18: if ts.l = l′ = lm
19: ts.c := max(ts.c, cm) + 1
20: else if ts.l = l′

21: ts.c := ts.c+ 1
22: else if ts.l = lm
23: ts.c := cm + 1
24: else
25: ts.c := 0
26: end if-else
27: end procedure

	1 Introduction
	2 Specification of AOR-Broadcast
	2.1 Distributed system model
	2.2 Definition of AOR-Broadcast

	3 An implementation of AOR-Broadcast
	3.1 Experimental evaluation

	4 An adaptive implementation of AOR-Broadcast
	4.1 Experimental evaluation

	5 A naive impossibility result
	6 Conclusions
	A Hybrid Logical Clocks

