
QSimov: Quantum Computing Framework1

Hernán Indíbil de la Cruz Calvo #2

Departmento de Sistemas Informáticos, Universidad de Castilla-La Mancha, Albacete, Spain3

José Javier Paulet González #4

Departamento de Sistemas Informáticos y Computación, Universidad Complutense de Madrid,5

Madrid, Spain6

Departmento de Sistemas Informáticos, Universidad de Castilla-La Mancha, Albacete, Spain7

Fernando Cuartero Gómez #8

Departmento de Sistemas Informáticos, Universidad de Castilla-La Mancha, Albacete, Spain9

Fernando López Pelayo #10

Departmento de Sistemas Informáticos, Universidad de Castilla-La Mancha, Albacete, Spain11

Abstract12

In this paper, we present QSimov: the Quantum Computing Framework we have developed. This13

tool has been designed having academic environments in mind, focused on being simple (immediate14

translation from the drawing of a circuit to code written for QSimov), lightweight (able to be run on15

a low-end laptop), potent (able to run big experiments) and open sourced. A couple of samples on16

how to implement some algorithms are provided, as well as graphs showing the execution times of17

the simulation, which in the worst cases will be exponential. QSimov is still under development: we18

are currently adding new features and changes asked by the community, as well as fixing any bug19

that might be detected.20

2012 ACM Subject Classification Theory of computation → Quantum computation theory21

Keywords and phrases Quantum computing, Simulation22

Funding This work has been supported by the IPI Conocimento y flexibilidad SL project ELABORA-23

CIÓN DE UNA PLATAFORMA DE COMPUTACIÓN CUÁNTICA, Y ACTIVIDADES FORM-24

ATIVAS (210296UCTR)25

1 Introduction26

QSimov (Figure 1) is a Python module designed to let the user developing and practising27

quantum computing algorithms regardless the underlying architecture. Since its conception,28

it was designed to be light weighted to run in a low-end laptop and as powerful as possible29

in terms the amount of qubits that can handle.30

QSimov is based on the circuit model, so allowing the user to implement algorithms not

Figure 1 QSimov logo.

31

mailto:HernanIndibil.Cruz@uclm.es
https://orcid.org/0000-0001-6445-5256
mailto:jpaulet@ucm.es
https://orcid.org/0000-0002-0777-4119
mailto:Fernando.Cuartero@uclm.es
https://orcid.org/0000-0001-6285-8860
mailto:FernandoL.Pelayo@uclm.es
https://orcid.org/0000-0001-7849-087X

2 QSimov: Quantum Computing Framework

restricted but for the number of entangled qubits. It also automatises the task of iterating a32

piece of code a whole number of times. Moreover, it provides operating seeds for random issues.33

34

QSimov is not just a simulator since it is open-sourced and modular structured in order35

to provide the developer with the possibility to run circuits defined in QSimov over some36

other simulators as either IBM’s Qiskit or Rigetti’s Forest.37

Last released QSimov’s version is 4.3.0.38

2 Architecture39

QSimov 4.3.0 is structured into two sub-modules:40

Drewom (Figure 2) is the module in charge of translating circuits designed over QSimov41

into other code suitable to be executed over some other simulators and, once executed42

the output is also translated into QSimov fashion. It is embedded into QSimov’s python43

package.44

Doki (Figure 3) is a quantum computer state vectors simulator written in C. It serves as45

the default target simulator for QSimov. It is included as another open-sourced python46

package.47

Figure 2 Drewom logo.

Figure 3 Doki logo.

The usual application flow is:48

1. The user writes a circuit according to QSimov49

2. The user instantiates an executor with Drewom (Doki connector is used by default)50

3. The user requires the executor to run the corresponding circuit51

4. Drewom translates the circuit into Doki instructions and executes them52

H. I. de la Cruz, J. J. Paulet, F. Cuartero and F. L. Pelayo 3

5. Drewom translates the results of the simulations from abroad into QSimov API format53

6. The executor returns the user with the output54

3 Computational complexity55

The computational complexities here stated apply when using the default simulator (Doki).56

3.1 Spatial complexity57

We set the size of the problem to n as the number of qubits used in the simulated quantum58

system.59

Ω(n) is the lower bound complexity order for the amount of memory required in single-60

qubit operations, i.e. entanglement free scenario.61

O(2n) is the upper bound complexity order under the worst case scenario conceived for62

this, i.e. maximum entanglement among the qubits (which involves two-qubits gates)63

3.2 Time complexity64

Gate application65

The size of the problem n − m + t, where n is the addition of the number of target qubits66

(included their tentative entangled qubits) and control qubits (included their tentative67

entangled qubits), m is the number of control (either control or anti-control) qubits in the68

gate, and t is the number of target qubits in the gate.69

Figure 4 n and m values associated with their respective operations. t = 1 for all the examples

Figure 4 shows an example on how to calculate n and m. In this example we know70

none of the initial value of the six qubits. Therefore, any gate of more than one qubit can71

potentially entangle every affected qubit (including controls and anti-controls). Red curved72

lines represent a possible entanglement relationship between two qubits. n is calculated by73

counting all the qubits connected by a red line to those affected by the gate. Since all the74

gates used only target one single qubit, t = 1 for all the operations in this example.75

4 QSimov: Quantum Computing Framework

Θ(2n−m+t)76

Measurement77

The size of the problem is n, the number of qubits potentially entangled with the one we78

want to measure.79

Θ(2n)80

4 Use cases81

Several quantum algorithms have been implemented on QSimov in order to give the reader a82

clear idea about how to use it, as well as to summarise the time taken at computing in some83

graphics.84

4.1 BB84 key exchange algorithm85

BB84 is a key exchange algorithm proposed by C. H. Bennett and G. Brassard in [1] as a86

quantum-resistant way to exchange a key between two parties. Since it only makes use of87

one-qubit gates, no qubits would be potentially entangled. That means this case covers the88

best-case scenario therefore it allows thousands of qubits to be simulated.89

The code written in Listing 1 makes use of QSystem, one of the low-level data structures90

in QSimov.91

250 500 750 1000 1250 1500 1750 2000
number of qubits

0

2

4

6

8

10

tim
e(

s)

Figure 5 BB84 execution time.

In Figure 5 we can see the amount of time needed in order to compute the BB84 algorithm92

with an increasing number of qubits. It takes polynomial time to execute it.93

4.2 Deutsch-Jozsa algorithm94

The Deutsch-Jozsa algorithm was proposed by David Deutsch and Richard Jozsa in 199295

[2]. It was one of the first algorithms to solve an actual computationally complex problem96

H. I. de la Cruz, J. J. Paulet, F. Cuartero and F. L. Pelayo 5

Listing 1 BB84 code.
def bb84(size):

Alice generates the random bit array
a = [rnd.randint(0, 1) for i in range(size)]
Alice randomly picks the basis
b = [rnd.randint(0, 1) for i in range(size)]
s = qj.QSystem(size)
for id in range(size):

Alice encodes the generated value
if a[id]:

s = s.apply_gate("X", targets=id)
Alice uses the basis she picked
if b[id]:

s = s.apply_gate("H", targets=id)
Alice sends the qubits to Bob
Bob then measures the received qubits using a random basis
b_prime = [rnd.randint(0, 1) for i in range(size)]
for id in range(size):

Basis change before measuring
if b[id]:

s = s.apply_gate("H", targets=id)
Measurement
_, a_prime = s.measure ([id for id in range(size)])
Bob publishes b ’. Alice answers with b.
Both discard the elements where b[i] != b ’[i]
new_a = [a[i] for i in range(size) if b[i] == b_prime[i]]
new_a_prime = [int(a_prime[i])

for i in range(size) if b[i] == b_prime[i]]
k = len(new_a) # Numbers remaining
Alice publishes half of the values
picked = rnd.sample ([i for i in range(k)], k//2)
Bob compares published values with his
errors = sum(new_a[i] != new_a_prime[i] for i in picked)
alice_key_str = "".join(str(new_a[i])

for i in range(k) if i not in picked)
bob_key_str = "".join(str(new_a_prime[i])

for i in range(k) if i not in picked)
Keys as integers
alice_key = int(alice_key_str , 2)
bob_key = int(bob_key_str , 2)
return alice_key , bob_key , len(alice_key_str), errors

6 QSimov: Quantum Computing Framework

(hard for classical machines) in polynomial time over a quantum computer (EQP complexity97

class). The statement of the problem is as follows, how to determine whether a function is98

constant or balanced, given that it can only be one of them?99

The code written in Listing 2 makes use of QRegistry, the lowest-level data structure in100

QSimov, to just start from the case of all the qubits under entanglement condition. The use101

of this structure greatly reduces the maximum number of qubits, so making the simulator102

assuming that all the qubits could be potentially entangled, in other words the worst-case103

scenario. Many different oracles have been used on this use case: f(x) = 0 and f(x) = 1 as104

the only possible constant oracles, and f(x) = xi with xi being the value of one of the input105

bits of x as the balanced oracles.106

5 10 15 20
number of qubits

0

20

40

60

80

100

tim
e(

s)

Figure 6 Deutsch-Jozsa execution time.

In Figure 6 we can see the amount of time needed to compute the Deutsch-Jozsa algorithm107

as the number of qubits grows. It takes exponential time to be executed.108

5 Future work109

QSimov is under a continuous improvement process roughly adding new features asked by110

the community. As it is an open-source project, contributions from everyone who could111

write efficient and clean/readable code, as well as proper suggestions will be very welcome.112

QSimov is currently used in several different environments, which give us a very valuable113

feedback to keep developing and improving it, among we want to point out the following:114

UCLM115

UCM116

CESGA: FinisTerrae II/III117

Oak Ridge National Laboratory: Summit118

In its initial phase, we have also colaborated with ABDProf, a company located in Valencia119

which is involved for years in quantum computing. It helped in including some features to120

be provided by QSimov. Currently we have included, or we are in process of including, the121

following characteristics:122

H. I. de la Cruz, J. J. Paulet, F. Cuartero and F. L. Pelayo 7

Listing 2 Deutsch-Jozsa code.
def dj_alg(nq , verbose=False):

my_print = lambda *args: None
if verbose:

my_print = print
We create a registry of nq qubita
r = qj.QRegistry(nq)
We apply a Pauli X gate to the last qubit
r = r.apply_gate("X", targets=nq -1)
We apply a Hadamard gate to each qubit
for i in range(nq):

r = r.apply_gate("H", targets=i)
We apply the oracle
is_balanced = bool(rnd.getrandbits (1))
if not is_balanced:

In this case f(x) = function_result
function_result is always the same value
for any value of x, constant function
function_result = rnd.getrandbits (1)
my_print(f"Using␣f(x)␣=␣{function_result}␣(constant)")
if function_result == 1:

r = r.apply_gate("X", targets=nq -1)
else:

In this case f(x) = xj
(value of the bit j of the number x)
balanced function
j = rnd.randrange(nq -1)
my_print(f"Using␣f(x)␣=␣x_{j}␣(balanced)")
r = r.apply_gate("X", targets=nq -1, controls=j)

We apply a Hadamard gate to all but the last qubit
for i in range(nq -1):

r = r.apply_gate("H", targets=i)
We measure all but the last qubit
_, res = r.measure ([i for i in range(nq -1)])
dj_result = any(res[:-1])
if dj_result:

my_print("Result:␣f(x)␣is␣balanced")
else:

my_print("Result:␣f(x)␣is␣constant")
return dj_result == is_balanced

8 QSimov: Quantum Computing Framework

Simulating over distributed memory architectures123

Simulating over architectures operating with GPUs (NVidia)124

Data structure based on tensor networks instead of state vectors (UJI)125

Including connectors for Qiskit, Forest and QPath126

Noise/error simulation127

Graphic front-end128

We are always open to contributions at:129

github.com/Mowstyl/QSimov: For the framework130

github.com/Mowstyl/Doki: For the current simulator131

References132

1 Charles H. Bennett and Gilles Brassard. Quantum cryptography: Public key distribu-133

tion and coin tossing. Theoretical Computer Science, 560:7–11, 2014. Theoretical As-134

pects of Quantum Cryptography – celebrating 30 years of BB84. URL: https://www.135

sciencedirect.com/science/article/pii/S0304397514004241, doi:https://doi.org/10.136

1016/j.tcs.2014.05.025.137

2 David Deutsch and Richard Jozsa. Rapid solution of problems by quantum computation.138

Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences,139

439:553–558, 1992. URL: https://royalsocietypublishing.org/doi/10.1098/rspa.1992.140

0167, doi:http://doi.org/10.1098/rspa.1992.0167.141

https://github.com/Mowstyl/QSimov
https://github.com/Mowstyl/Doki
https://www.sciencedirect.com/science/article/pii/S0304397514004241
https://www.sciencedirect.com/science/article/pii/S0304397514004241
https://www.sciencedirect.com/science/article/pii/S0304397514004241
https://doi.org/https://doi.org/10.1016/j.tcs.2014.05.025
https://doi.org/https://doi.org/10.1016/j.tcs.2014.05.025
https://doi.org/https://doi.org/10.1016/j.tcs.2014.05.025
https://royalsocietypublishing.org/doi/10.1098/rspa.1992.0167
https://royalsocietypublishing.org/doi/10.1098/rspa.1992.0167
https://royalsocietypublishing.org/doi/10.1098/rspa.1992.0167
https://doi.org/http://doi.org/10.1098/rspa.1992.0167

	1 Introduction
	2 Architecture
	3 Computational complexity
	3.1 Spatial complexity
	3.2 Time complexity

	4 Use cases
	4.1 BB84 key exchange algorithm
	4.2 Deutsch-Jozsa algorithm

	5 Future work

