
Setchain: Improving Blockchain Scalability1

with Byzantine Distributed Sets and Barriers2

Margarita Capretto ��3

IMDEA Software Institute, Pozuelo de Alarcón, Madrid, Spain4

Martín Ceresa ��5

IMDEA Software Institute, Pozuelo de Alarcón, Madrid, Spain6

Antonio Fernández Anta � �7

IMDEA Networks Institute, Leganés, Madrid, Spain8

Antonio Russo ��9

IMDEA Networks Institute, Leganés, Madrid, Spain10

César Sánchez ��11

IMDEA Software Institute, Pozuelo de Alarcón, Madrid, Spain12

Abstract13

Blockchain technologies are facing a scalability challenge, which must be overcome to guarantee a14

wider adoption of the technology. This scalability issue is due to the use of consensus algorithms to15

guarantee the total order of the chain of blocks (and of the transactions within each block). However,16

total order is often overkilling, since important advanced applications of smart-contracts do not17

require a total order among all operations. A much higher scalability can potentially be achieved if18

a more relaxed order (instead of a total order) can be exploited.19

In this paper, we propose a distributed concurrent data type, called Setchain, which improves20

scalability significantly. A Setchain implements a grow-only set object whose elements are not21

ordered, unlike conventional blockchain operations. When convenient, the Setchain allows forcing a22

synchronization barrier that assigns permanently an epoch number to a subset of the latest elements23

added. Therefore, two operations in the same epoch are not ordered, while two operations in different24

epochs are ordered by their respective epoch number. We present different Byzantine-tolerant25

implementations of Setchain, prove their correctness and report on an empirical evaluation of a26

prototype implementation.27

Our results show that Setchain is orders of magnitude faster than consensus-based ledgers, since28

it implements grow-only sets with epoch synchronization instead of total order. Moreover, since the29

Setchain barriers can be synchronized with the underlying blockchain, Setchain objects can be used30

as a sidechain to implement many smart contract solutions with much faster operations than on31

basic blockchains.32

2012 ACM Subject Classification Security and privacy → Distributed systems security33

Keywords and phrases Distributed systems, blockchain, byzantine distributed objects, consensus,34

Setchain.35

1 Introduction36

1.1 The Problem37

Distributed ledgers (also known as blockchains) were first proposed by Nakamoto in 2009 [21]38

in the implementation of Bitcoin, as a method to eliminate trustable third parties in electronic39

payment systems. Modern blockchains incorporate smart contracts [28, 33], which are state-40

full programs stored in the blockchain that describe the functionality of the transactions,41

including the exchange of cryptocurrency. Smart contracts allow to describe sophisticated42

mailto:margarita.capretto@imdea.org
mailto:martin.ceresa@imdea.org
mailto:antonio.fernandez@imdea.org
mailto:antonio.russo@imdea.org
mailto:cesar.sanchez@imdea.org

2 Setchain: Improving Blockchain Scalabilitywith Byzantine Distributed Sets and Barriers

functionality, enabling many applications in decentralized finances (DeFi)1, decentralized43

governance, Web3, etc.44

The main element of all distributed ledgers is the “blockchain”, which is a distributed45

object that contains, packed in blocks, the ordered list of transactions performed on behalf of46

the users [14, 13]. This object is maintained by multiple servers without a central authority47

by using consensus algorithms that are resilient to Byzantine attacks.48

However, a current major obstacle for a faster widespread adoption of blockchain tech-49

nologies is their limited scalability, due to the delay introduced by Byzantine consensus50

algorithms [8, 31]. Ethereum [33], one of the most popular blockchains, is limited to less51

than 4 blocks per minute, each containing less than two thousand transactions. Bitcoin [21]52

offers even lower throughput. These figures are orders of magnitude slower than what53

many decentralized applications require, and can ultimately jeopardize the adoption of the54

technology in many promising domains. This limit in the throughput of the blockchain also55

increases the price per operation, due to the high demand to execute operations.56

Consequently, there is a growing interest in techniques to improve the scalability of57

blockchains [20, 35]. Approaches include (1) the search for faster consensus algorithms [32], (2)58

the use of parallel techniques, like sharding [10], (3) building application-specific blockchains59

with Inter-Blockchain Communication capabilities [34], [19], or (4) extracting functionality60

out of the blockchain, while trying to preserve the guarantees of the blockchain: the “layer61

2” (L2) approach [17]. L2 approaches include the computation off-chain of Zero-Knowledge62

proofs [2], which only need to be checked on-chain (hopefully more efficiently) [1], the adoption63

of limited (but useful) functionality like channels (e.g., Lightning [22]), or the deployment64

of optimistic rollups (e.g., Arbitrum [18]) based on avoiding running the contracts in the65

servers (except when needed to annotate claims and resolve disputes).66

In this paper, we propose an alternative approach to increase blockchain scalability that67

exploits the following observation. It has been traditionally assumed that cryptocurrencies68

require total order to guarantee the absence of double-spending. However, many useful69

applications and functionalities (including cryptocurrencies [16]) can tolerate more relaxed70

guarantees, where operations are only partially ordered. We propose here a Byzantine-fault71

tolerant implementation of a distributed grow-only set [27, 5], equipped with an additional72

operation for introducing points of barrier synchronization (where all servers agree on the73

contents of the set). Between barriers, elements of the distributed set can temporarily be74

known by some but not all servers. We call this distributed data structure a Setchain. A75

blockchain B implementing Setchain (as well as blocks) can align the consolidation of the76

blocks of B with barrier synchronizations, obtaining a very efficient set object as side data77

type, with the same Byzantine-tolerance guarantees that B itself offers.78

There are two extreme implementations of a transaction set with epochs (like Setchain)79

in the context of blockchains:80

1.1.0.1 A Completely off-chain implementation81

The major drawback is that from the point of view of the underlying blockchain the resulting82

implementation does not have the trustability and accountability guarantees that blockchains83

offer. One example of this approach are mempools. Mempools (short for memory pools)84

are a P2P data type used by most blockchains to maintain a set of pending transactions.85

1 As of December 2021, the monetary value locked in DeFi was estimated to be
around $100B, according to Statista https://www.statista.com/statistics/1237821/
defi-market-size-value-crypto-locked-usd/.

https://www.statista.com/statistics/1237821/defi-market-size-value-crypto-locked-usd/
https://www.statista.com/statistics/1237821/defi-market-size-value-crypto-locked-usd/

M. Capretto and M. Ceresa and A. Fernández Anta and A. Russo and C. Sánchez 3

Mempools fulfill two objectives: (1) to prevent distributed attacks to the servers that mine86

blocks and (2) to serve as a pool of transaction requests from where block producers select87

operations. Nowadays, mempools are receiving a lot of attention, since they suffer from88

lack of accountability and are a source of attacks [26, 25], including front-running [9, 24, 30].89

Our proposed data structure, Setchain, offers a much stronger accountability, because it is90

resilient to Byzantine attacks and the contents of the set that Setchain maintains is public91

and cannot be forged.92

1.1.0.2 Completely on-chain solution93

Consider the following implementation (in a language similar to Solidity), where add is used94

to add elements, and epochinc to increase epochs.95

96
contract Epoch {97

uint public epoch = 0;98

set public the_set = emptyset ;99

mapping (uint => set) public history ;100

function add(elem data) public {101

the_set .add(data);102

}103

function epochinc () public {104

history [++ epoch] = the_set . setminus (history);105

}106

}107108

Since epoch, the_set, and history are defined public, there is an implicit getter function109

for each of them2. One problem of this implementation is that every time we add an110

element, the_set gets bigger, which can affect the required cost to execute the contract. A111

second more important problem is that adding elements is slow—as slow as interacting with112

the blockchain—while our main goal is to provide a much faster data structure than the113

blockchain.114

Our approach is faster, and can be deployed independently of the underlying blockchain115

or synchronized with the blockchain nodes. Thus, it lies between of these two extremes.116

For any given blockchain B, we propose an implementation of Setchain that (1) is much117

more efficient than implementing and executing operations directly in B; (2) offers the same118

decentralized guarantees against Byzantine attacks than B, and (3) can be synchronized with119

the evolution of B, so contracts could potentially inspect the contents of the Setchain. In a120

nutshell, these goals are achieved by using faster operations for the coordination among the121

servers (namely, reliable broadcast) for non-synchronized element insertions, and use only a122

consensus like algorithm for epoch changes.123

1.2 Motivation124

The potential applications that motivate the development of Setchain include:125

1.2.1 Mempool126

User transaction requests are nowadays stored in a mempool before they are chosen by127

miners, and once mined the information is lost. Recording and studying the evolution of128

mempools would require an additional object serving as a mempool log system, which must129

2 In a public blockchain this function is not needed, since the set of elements can be directly obtained
from the state of the blockchain.

4 Setchain: Improving Blockchain Scalabilitywith Byzantine Distributed Sets and Barriers

be fast enough to record every attempt of interaction with the mempool without affecting130

the underlying blockchain’s performance. Setchain as a sidechain can be used to implement131

one such trustable log system.132

1.2.2 Scalability by L2 Optimistic Rollups133

Optimistic rollups, like Arbitrum [18], use the fact that computation can be done outside the134

blockchain, posting on-chain only claims about its evolution. In this optimistic strategy users135

can propose the next state of the “contract.” After some time, the arbitrer smart contract136

on-chain assumes that a given proposed step is correct, and executes the annotated effects.137

A conflict resolution algorithm, also part of the contract on-chain, is used to resolve disputes.138

This protocol does not require a strict total order, but only a record of the actions proposed.139

Moreover, conflict resolutions can be reduced to claim validations, which could be performed140

by the maintainers of the Setchain.141

1.2.3 Sidechain Data142

Finally, Setchain can also be used as a general side-chain service used to store and modify143

data synchronized with the blocks. Applications that require only to update information144

in the storage space of a smart contract, like digital registries, can benefit from faster (and145

therefore cheaper) methods to manipulate the storage without invoking expensive blockchain146

operations.147

1.3 Contributions.148

In summary, the contributions of the paper are the following:149

the design and implementation of a side-chain data structure called distributed Setchain,150

several implementations of Setchain, providing different levels of abstraction and al-151

gorithmic implementation improvements,152

an empirical evaluation of a prototype implementation, which suggests that Setchain is153

several orders of magnitude faster than consensus.154

2 Preliminaries155

In this section, we present the model of computation as well as the building blocks used in156

our Setchain algorithms.157

2.1 Model of Computation158

A distributed system consists of processes—clients and servers—with an underlying com-159

munication graph in which each process can communicate with every other process. The160

communication is performed using message passing. Each process computes independently161

and at its own speed, and the internals of each process remain unknown to other processes.162

Message transfer delays are arbitrary but finite and also remain always unknown to processes.163

The intention is that servers will communicate among themselves to implement a distributed164

data type with certain guarantees, and clients can communicate with servers to exercise the165

data type.166

Processes can fail arbitrarily, but the number of failing servers is bounded by f , and167

the total number of servers, n, is at least 3f + 1. We assume reliable channels between168

non-Byzantine (correct) processes, so no message is lost, duplicated or modified. Each process169

M. Capretto and M. Ceresa and A. Fernández Anta and A. Russo and C. Sánchez 5

(client or server) has a pair of public and private keys. The public keys have been distributed170

reliably to all the processes that may interact with each other. Therefore, we discard the171

possibility of spurious or fake processes. We assume that messages are authenticated, so172

that messages corrupted or fabricated by Byzantine processes are detected and discarded173

by correct processes [7]. As result, communication between correct processes is reliable174

but asynchronous by default. However, for the set consensus service we use as a basic175

building block, partial synchrony is required [6, 15], as presented below. Observe that this176

requirement is only for the messages and computation of the protocol implementing this177

service. Finally, we assume that there is a mechanism for clients to create “valid objects” that178

servers can check locally. In the context of blockchains this is implemented using public-key179

cryptography.180

2.2 Building Blocks181

We will use four building blocks to implement Setchain:182

2.2.1 Byzantine Reliable Broadcast (BRB)183

The BRB service [3, 23], allows to broadcast messages to a set of processes guaranteeing184

that messages sent by correct processes are eventually received by all correct processes185

and that all correct processes eventually receive the same set of messages. The service186

provides a primitive BRB.Broadcast(m) for sending messages and an event BRB.Deliver(m)187

for receiving messages. Some important properties of BRB are:188

BRB-Validity: If a correct process pi executes BRB.Deliver(m) and m was sent by a189

correct process pj , then pj executed BRB.Broadcast(m) in the past.190

BRB-Termination: If a correct process p executes BRB.Broadcast(m), then all correct191

processes (including p) eventually execute BRB.Deliver(m).192

Note that BRB does not guarantee the delivery of messages in the same order to two different193

correct participants.194

2.2.2 Byzantine Atomic Broadcast (BAB)195

The BAB service [11] extends BRB with an additional guarantee: a total order of delivery of196

the messages. BAB provides the same operation and event as BRB, which we will rename197

as BAB.Broadcast(m) and BAB.Deliver(m). In addition to validity and termination, BAB198

services also provide:199

Total Order: If two correct processes p and q both BAB.Deliver(m) and BAB.Deliver(m′),200

then p delivers m before m′, if and only if q delivers m before m′.201

BAB has been proven to be as hard as consensus [11], and thus, is subject to the same202

limitations [15].203

2.2.3 Byzantine Distributed Grow-only Sets (DSO) [5]204

Sets are one of the most basic and fundamental data structures in computer science, which205

typically include operations for adding and removing elements. Adding and removing opera-206

tions do not commute, and thus, distributed implementations require additional mechanisms207

to keep replicas synchronized to prevent conflicting local states. One solution is to allow208

only additions. Hence, a grow-only set is a set in which elements can only be added but not209

removed (implementable as a conflict-free replicated data structure [27]).210

6 Setchain: Improving Blockchain Scalabilitywith Byzantine Distributed Sets and Barriers

Let A be an alphabet of values. A grow-only set GS is a concurrent object maintaining211

an internal set GS.S ⊆ A offering two operations for any process p:212

GS.add(r) : adds an element r ∈ A to the set GS.S.213

GS.get() : retrieves the internal set of elements GS.S.214

Initially, the set GS.S is empty. A Byzantine distributed grow-only set object (DSO) is a215

concurrent grow-only set implemented in a distributed manner [5] and tolerant to Byzantine216

attacks. Some important properties of these DSOs are:217

Byzantine Completeness: All get() and add() operations invoked by correct processes218

eventually complete.219

DSO-AddGet: All add(r) operations will eventually result in r being in the set returned220

by all get().221

DSO-GetAdd: Each element r returned by get() was added using add(r) in the past.222

2.2.4 Set Byzantine Consensus (SBC)223

SBC, introduced in RedBelly [6], is a Byzantine-tolerant distributed problem, similar to224

consensus. In SBC, each participant proposes a set of elements (in the particular case of225

RedBelly, a set of transactions). After SBC finishes, all correct servers agree on a set of valid226

elements which is guaranteed to be a subset of the union of the proposed sets. Intuitively,227

SBC efficiently runs binary consensus to agree on the sets proposed by each participant, such228

that if the outcome is positive then the set proposed is included in the final set consensus.229

Some properties of SBC are:230

SBC-Termination: every correct process eventually decides a set of elements.231

SBC-Agreement: no two correct process decide different sets of elements.232

SBC-Validity: when SBC is used on sets of transactions, the decided set of transactions233

is a valid non-conflicting subset of the union of the proposed sets.234

SBC-Nontriviality: if all processes are correct and propose an identical set, then this235

is the decided set.236

The RedBelly algorithm [6] solves SBC in a system with partial synchrony: there is an237

unknown global stabilization time after which communication is synchronous. (Other SBC238

algorithms may have different partial synchrony assumptions.) Then, [6] proposes to use SBC239

to replace consensus algorithms in blockchains, seeking to improve scalability, because all240

transactions to be included in the next block can be decided with one execution of the SBC241

algorithm. Every server computes the same block by applying a deterministic function that242

totally orders the decided set of transactions, removing invalid or conflicting transactions.243

Our use of SBC is different from implementing a blockchain. We use it to synchronize the244

barriers between local views of distributed grow-only sets. To guarantee that all elements245

are eventually assigned to epochs, we need the following property in the SBC service used.246

SBC-Censorship-Resistance: there is a time τ after which, if the proposed sets of all247

correct processes contain the same element e, then e will be in the decided set.248

In RedBelly, this property holds because after the global stabilization time, all set consensus249

rounds decide sets from correct processes [6, Theorem 3].250

3 The Setchain Distributed Data Structure251

A key concept of Setchain is the epoch number, which is a global counter that the distributed252

data structure maintains. The synchronization barrier is realized as an epoch change: the253

epoch number is increased and the elements in the grow-only set that have not been assigned254

a previous epoch are stamped with the new epoch number.255

M. Capretto and M. Ceresa and A. Fernández Anta and A. Russo and C. Sánchez 7

3.1 API and Server State of the Setchain256

We consider a universe U of elements that client processes can inject into the set. We also257

assume that servers can locally validate an element e ∈ U . A Setchain is a distributed data258

structure where a set of server nodes, D, maintain:259

a set the_set ⊆ U of elements added;260

a natural number epoch ∈ N;261

a map history : [1..epoch]→ P(U), that describes the sets of elements that have been262

stamped with an epoch number (P(U) denotes the power set of U).263

Each server node v ∈ D supports three operations, available to any client process:264

v.add(e): requests to add e to the_set.265

v.get(): returns the values of the_set, history, and epoch, as seen by v.266

v.epoch_inc(h) triggers an epoch change (i.e., a synchronization barrier). It must hold267

that h = epoch + 1.268

Informally, a client process p invokes a v.get() operation in node v to obtain (S,H, h), which269

is v’s view of set v.the_set and map v.history, with domain [1 . . . h]. Process p invokes270

v.add(e) to insert a new element e in v.the_set, and v.epoch_inc(h+1) to request an epoch271

increment. At server v, the set v.the_set contains the knowledge of v about elements that272

have been added, including those that have not been assigned an epoch yet, while v.history273

contains only those elements that have been assigned an epoch. A typical scenario is that an274

element e ∈ U is first perceived by v to be in the_set, to eventually be stamped and copied275

to history in an epoch increment. However, as we will see, some implementations allow276

other ways to insert elements, in which v gets to know e for the first time during an epoch277

change. The operation epoch_inc() initiates the process of collecting elements in the_set278

at each node and collaboratively decide which ones are stamped with the current epoch.279

Initially, both the_set and history are empty and epoch = 0 in every correct server.280

Note that client processes can insert elements to the_set through add(), but only serv-281

ers decide how to update history, which client processes can only influence by invoking282

epoch_inc().283

At a given point in time, the view of the_set may differ from server to server. The284

Setchain data structure we propose only provides eventual consistency guarantees, as defined285

next.286

3.2 Desired Properties287

We specify now properties of correct implementations of Setchain. We provide first a low-level288

specification that assumes that clients interact with a correct server. Even though clients289

cannot be sure of whether the server they contact is correct we will see how they can later290

check and confirm that the operations were successful. These low-level primitives are also291

used in Section 7 to build a protocol that allows correct clients to perform operations even292

when they interact with Byzantine servers, at the price of performance.293

We start by requiring from a Setchain that every add, get, and epoch_inc operation294

issued on a correct server eventually terminates. We say that element e is in epoch i in295

history H (e.g., returned by a get invocation) if e ∈ H(i). We say that element e is in H if296

there is an epoch i such that e ∈ H(i). The first property states that epochs only contain297

elements coming from the grow-only set.298

I Property 1 (Consistent Sets). Let (S,H, h) = v.get() be the result of an invocation to a299

correct server v. Then, for each i ≤ h,H(i) ⊆ S.300

8 Setchain: Improving Blockchain Scalabilitywith Byzantine Distributed Sets and Barriers

The second property states that every element added to a correct server is eventually returned301

in all future gets issued on the same server.302

I Property 2 (Add-Get-Local). Let v.add(e) be an operation invoked to a correct server v.303

Then, eventually all invocations (S,H, h) = v.get() satisfy e ∈ S.304

The next property states that elements present in a correct server are propagated to all305

correct servers.306

I Property 3 (Add-Get). Let v, w be two correct servers, let e ∈ U and let (S,H, h) = v.get().307

If e ∈ S, then eventually all invocations (S′, H ′, h′) = w.get() satisfy that e ∈ S′.308

We assume in the rest of the paper that at every point in time, there is a future instant309

at which epoch_inc() is invoked and completed. This is a reasonable assumption in any310

real practical scenario, since it can be easily guaranteed using timeouts. Then, the following311

property states that all elements added are eventually assigned an epoch.312

I Property 4 (Eventual-Get). Let v be a correct server, let e ∈ U and let (S,H, h) = v.get().313

If e ∈ S, then eventually all invocations (S′, H ′, h′) = v.get() satisfy that e ∈ H ′.314

The previous three properties imply the following property.315

I Property 5 (Get-After-Add). Let v.add(e) be an operation invoked on a correct server v316

with e ∈ U . Then, eventually all invocations (S,H, h) = w.get() satisfy that e ∈ H, for all317

correct servers w.318

An element can be in at most one epoch, and no element can be in two different epochs even319

if the history sets are obtained from get invocations to two different (correct) servers.320

I Property 6 (Unique Epoch). Let v be a correct server, (S,H, h) = v.get(), and let i, i′ ≤ h321

with i 6= i′. Then, H(i) ∩H(i′) = ∅.322

All correct server processes agree on the epoch contents.323

I Property 7 (Consistent Gets). Let v, w be correct servers, let (S,H, h) = v.get() and324

(S′, H ′, h′) = w.get(), and let i ≤ min(h, h′). Then H(i) = H ′(i).325

Property 7 states that the histories returned by two get invocations to correct servers are one326

the prefix of the other. However, since two elements e and e′ can be inserted at two different327

correct servers—which can take time to propagate—, the the_set part of get obtained from328

two correct servers may not be contained in one another.329

Finally, we require that every element in the history comes from the result of a client330

adding the element.331

I Property 8 (Add-before-Get). Let v be a correct server, (S,H, h) = v.get(), and e ∈ S.332

Then, there was an operation w.add(e) in the past.333

Properties 1, 6, 7 and 8 are safety properties. Properties 2, 3, 4 and 5 are liveness334

properties.335

4 Implementations336

In this section, we describe implementations of Setchain that satisfy the properties in Sec-337

tion 3. We first describe a centralized sequential implementation, and then three distributed338

M. Capretto and M. Ceresa and A. Fernández Anta and A. Russo and C. Sánchez 9

Algorithm 0 Single server implementation.

1: Init: epoch← 0, history← ∅
2: Init: the_set← ∅
3: function Get()
4: return (the_set, history, epoch)
5: function Add(e)
6: assert valid(e)
7: the_set← the_set ∪ {e}
8: function EpochInc(h)
9: assert h ≡ epoch + 1
10: proposal← the_set \

⋃epoch
k=1 history(k)

11: history← history ∪ {〈h, proposal〉}
12: epoch← epoch + 1

implementations. The first distributed implementation is built using a Byzantine distrib-339

uted grow-only set object (DSO) to maintain the_set, and Byzantine atomic broadcast340

(BAB) for epoch increments. The second distributed implementation is also built using341

DSO, but it uses Byzantine reliable broadcast (BRB) to announce epoch increments and set342

Byzantine consensus (SBC) for epoch changes. Finally, the third one uses local sets, BRB343

for broadcasting elements and epoch increment announcements, and SBC for epoch changes.344

4.1 Sequential Implementation345

Alg. 0 shows a centralized solution, which maintains two local sets, the_set—to record346

added elements—, and history, which is implemented as a collection of pairs 〈h,A〉 where347

h is an epoch number and A is a set of elements. We use history(h) to refer to the set A348

in the pair 〈h,A〉 ∈ history. A natural number epoch is incremented each time there is a349

new epoch. The operations are: Add(e), which checks that element e is valid and adds it to350

the_set, and Get(), which returns (the_set, history, epoch).351

4.2 Distributed Implementations352

4.2.1 First approach. DSO and BAB353

Alg. 1 uses two external services: DSO and BAB. We denote messages with the name of354

the message followed by its content as in “epinc(h, proposal, i)”. The variable the_set is355

not a local set anymore, but a DSO initialized empty with Init() in line 2. The function356

Get() invokes the DSO Get() function (line 4) to fetch the set of elements. The function357

EpochInc(h) triggers the mechanism required to increment an epoch and reach a consensus358

on the elements. This process begins by computing a local proposal set, of those elements359

added but not stamped (line 14). The proposal set is then broadcasted using a BAB service360

alongside the epoch number h and the server node id i (line 15). Then, the server waits to361

receive exactly 2f + 1 proposals, and keeps the set of elements E present in at least f + 1362

proposals, which guarantees that each element e ∈ E was proposed by at least one correct363

server. The use of BAB guarantees that every message sent by a correct server eventually364

reaches every other correct server in the same order, so all correct servers use the same set365

of 2f + 1 proposals. Therefore, all correct servers arrive to the same conclusion, and the set366

E is added as epoch h in history in line 20.367

10 Setchain: Improving Blockchain Scalabilitywith Byzantine Distributed Sets and Barriers

Algorithm 1 Server i implementation using DSO and BAB

1: Init: epoch← 0, history← ∅
2: Init: the_set←DSO.Init()
3: function Get()
4: return (the_set.Get(), history, epoch)
5: function Add(e)
6: assert valid(e)
7: the_set.Add(e)
12: function EpochInc(h)
13: assert h ≡ epoch + 1
14: proposal← the_set.Get() \

⋃epoch
k=1 history(k)

15: BAB.Broadcast(epinc(h, proposal, i))
16: upon (BAB.Deliver(epinc(h, proposal, j))
17: from 2f + 1 different servers j for the same h) do
18: assert h ≡ epoch + 1
19: E ← {e : e ∈ proposal for at least f + 1 different j}
20: history← history ∪ {〈h, E〉}
21: epoch← epoch + 1
22: end upon

Alg. 1, while easy to understand and prove correct, is not efficient. To start, in order to368

complete an epoch increment, it requires at least 3f + 1 calls to EpochInc(h) to different369

servers, so at least 2f + 1 proposals are received (the f Byzantine severs may not propose370

anything). Another source of inefficiency comes from the use of off-the-shelf building blocks.371

For instance, every time a DSO Get() is invoked, many messages are exchanged to compute372

a reliable local view of the set [5]. Similarly, every epoch change requires a DSO Get()373

in line 14 to create a proposal. Additionally, line 17 requires waiting for 2f + 1 atomic374

broadcast deliveries to take place. The most natural implementations of BAB services solve375

one consensus per message delivered (see Fig. 7 in [4]), which would make this algorithm376

very slow. We solve these problems in two alternative algorithms.377

4.2.2 Second approach. Avoiding BAB378

Alg. 2 improves the performance of Alg. 1 in several ways. First, it uses BRB to propagate379

epoch increments, so a client does not need to contact more than one server. Second, the use380

of BAB and the wait for the arrival of 2f + 1 messages in line 17 of Alg. 1 is replaced by381

using a SBC algorithm, which allows solving several consensus instances simultaneously.382

Ideally, when an EpochInc(h) is triggered unstampped elements in the local the_set of383

each correct server should be stamped with the new epoch number and added to the set384

history. However, we need to guarantee that for every epoch the set history is the same in385

every correct server. Alg 1 enforced this using BAB and counting sufficient received messages.386

Alg. 2 uses SBC to solve several independent consensus instances simultaneously, one on387

each participant’s proposal. Line 14 broadcasts an invitation to an epoch change, which388

causes correct servers to build a proposed set and propose it the SBC. There is one instance389

of SBC per epoch change, identified by h. With SBC each correct server receives the same390

set of proposals (where each proposal is a set of elements). Then, every node applies the391

same function to the same set of proposals reaching the same conclusion on how to update392

history(h). The function preserves elements that are present in at least f + 1 proposed sets,393

M. Capretto and M. Ceresa and A. Fernández Anta and A. Russo and C. Sánchez 11

Algorithm 2 Server i implementation using DSO, and reliably broadcast (BRB) and set Byzantine
consensus (SBC).

11: Get and Add as in Alg. 1
12: function EpochInc(h)
13: assert h ≡ epoch + 1
14: BRB.Broadcast(epinc(h))
15: upon (BRB.Deliver(epinc(h)) and h < epoch + 1) do
16: drop
17: end upon
18: upon (BRB.Deliver(h) and h ≡ epoch + 1) do
19: assert prop[h] ≡ null

20: prop[h]← the_set.Get() \
⋃epoch

k=1 history(k)
21: SBC[h].Propose(prop[h])
22: end upon
23: upon (SBC[h].SetDeliver(propset) and h ≡ epoch + 1) do
24: E ← {e : e ∈ at least f + 1 different propset[j]}
25: history← history ∪ {〈h, E〉}
26: epoch← epoch + 1
27: end upon

which are guaranteed to have been proposed by some correct server. Observe that Alg. 2394

still triggers one invocation of the DSO Get at each server to build the local proposal.395

4.2.3 Final approach. BRB and SBC without DSOs396

Alg. 3, avoids the cascade of messages that DSO Get calls require by dissecting the internals397

of the DSO, and incorporating the internal steps in the Setchain algorithm directly. This398

idea exploits the fact that a correct Setchain server is a correct client of the DSO, and there399

is no need for the DSO to be defensive (this illustrates that using Byzantine resilient building400

blocks does not compose efficiently, but exploring this general idea is out of the scope of this401

paper).402

Alg. 3 implements the_set using a local set (line 2). Elements received in Add(e) are403

propagated using BRB. At any given point in time two correct servers may have a different404

local sets (due to pending BRB deliveries) but each element added in one server will eventually405

be known to all others. The local variable history is only updated in line 25 as a result of a406

SBC round. Therefore, all correct servers will agree on the same sets formed by unstamped407

elements proposed by some server. Additionally, Alg. 3 updates the_set to account for408

elements that are new to the server (line 26) , guaranteeing that all elements in history are409

also in the_set. Note that this opens the opportunity to add elements directly by proposing410

them during an epoch change without broadcasting them before. This optimization is411

exploited in Section 6 to speed up the algorithm further. As a final note, Alg. 3 allows412

a Byzantine server to bypass Add to propose elements, which will be accepted as long as413

the elements are valid. This is equivalent to a client proposing an element using an Add414

operation, which is then successfully propagated in an epoch change.415

5 Proof of Correctness416

We prove now the correctness of Alg. 3. We first show that all stamped elements are in417

the_set, which implies Prop. 1 (Consistent Sets).418

12 Setchain: Improving Blockchain Scalabilitywith Byzantine Distributed Sets and Barriers

Algorithm 3 Server implementation using a local set, Byzantine reliable broadcast (BRB) and
set Byzantine consensus (SBC).

1: Init: epoch← 0, history← ∅
2: Init: the_set← ∅
3: function Get()
4: return (the_set, history, epoch)
5: function Add(e)
6: assert valid(e) and e /∈ the_set
7: BRB.Broadcast(add(e))
8: upon (BRB.Deliver(add(e))) do
9: assert valid(e)
10: the_set← the_set ∪ {e}
11: end upon
12: function EpochInc(h)
13: assert h ≡ epoch + 1
14: BRB.Broadcast(epinc(h))
15: upon (BRB.Deliver(epinc(h)) and h < epoch + 1) do
16: drop
17: end upon
18: upon (BRB.Deliver(epinc(h)) and h ≡ epoch + 1) do
19: assert prop[h] ≡ ∅
20: prop[h]← the_set \

⋃epoch
k=1 history(k)

21: SBC[h].Propose(prop[h])
22: end upon
23: upon (SBC[h].SetDeliver(propset) and h ≡ epoch + 1) do
24: E ← {e : e ∈ propset[j], valid(e) ∧ e /∈ history}
25: history← history ∪ {〈h, E〉}
26: the_set← the_set ∪ E

27: epoch← epoch + 1
28: end upon

I Lemma 1. For every correct server v, at the end of each function/upon,
⋃

h v.history(h) ⊆419

v.the_set.420

Proof. Let v be a server. The only way to add elements to v.history is at line 25, which is421

followed by line 26 which adds the same elements to v.the_set. The only other instruction422

that modifies v.the_set is line 10 which only makes the set grow. J423

I Lemma 2. Let v be a correct server and e an element in v.the_set. Then e will eventually424

be in w.the_set for every correct server w.425

Proof. Initially, v.the_set is empty. There are two ways to add an element e to v.the_set:426

(1) At line 10, so e is valid and was received via a BRB.Deliver(add(e)). By Properties427

BRB-Validity and BRB-Termination of BRB (see Section 2), every correct server w428

will eventually execute BRB.Deliver(add(e)), and then (since e is valid), w will add it to429

w.the_set in line 10. (2) At line 26, so element e is valid and was received as an element in one430

of the sets in propset from SBC[h].SetDeliver(propset) with h = v.epoch + 1. By properties431

SBC-Termination SBC-Agreement and SBC-Validity of SBC (see Section 2), all432

correct servers agree on the same set of proposals. Therefore, if v adds e then w either adds433

it or has it already in its w.history which implies by Lemma 1 that e ∈ w.the_set. In434

either case, e will eventually be in w.the_set. J435

M. Capretto and M. Ceresa and A. Fernández Anta and A. Russo and C. Sánchez 13

Lemma 2, and the code of Add() and line 4 of Get() imply Prop. 2 (Add-Get-Local) and436

Prop. 3 (Add-Get). The following lemmas reason about how elements are stamped.437

I Lemma 3. Let v be a correct server and e ∈ v.history(h) for some h. Then, for any438

h′ 6= h, e /∈ v.history(h′).439

Proof. It follows directly from the check that e is not injected at v.history(h) if e ∈440

v.history in line 25. J441

I Lemma 4. Let v and w be correct servers. At a point in time, let h be such that v.epoch ≥ h442

and w.epoch ≥ h. Then v.history(h) = w.history(h).443

Proof. The proof proceeds by induction on epoch. The base case is epoch = 0, which holds444

trivially since v.history(0) = w.history(0) = ∅. Variable epoch is only incremented in445

one unit in line 27, after history(h) has been changed in line 25 when h = epoch + 1. In446

that line, v and w are in the same phase on SBC (for the same h). By SBC-Agreement,447

v and w receive the same propset, both v and w validate all elements equally, and (by448

inductive hypothesis), for each h′ ≤ epoch it holds that e ∈ v.history(h′) if and only if449

e ∈ w.history(h′). Therefore, in line 25 both v and w update history(h) equally, and after450

line 27 it holds that v.history(epoch) = w.history(epoch). J451

I Lemma 5. Let v and w be correct servers. If e ∈ v.the_set. Then, eventually e is in452

w.history.453

Proof. By Lemma 2 every correct server w will satisfy e ∈ w.the_set at some t > τ . By454

assumption, there is a new EpochInc() after t (let the epoch number be h). If e is already455

in history(h′) for h′ < h we are done, since from Lemma 4 in this case at the end of the456

SBC phase for h′ every correct server node w has e in w.history(h′). If e is not in history457

at t then, SBC-Censorship-Resistance guarantees that the decided set will contain e.458

Therefore, at line 25 every correct server w will add e to w.history(h). J459

Lemmas 4 and 5 imply that all elements will be stamped, i.e. Prop. 3 (Eventual-Get).460

Prop. 5 follows from Prop. 3. Lemma 3 directly implies Prop. 6 (Unique Epoch). Finally,461

Lemma 4 is equivalent to Prop. 7 (Consistent Gets).462

Finally, we discuss Prop. 8 (Add-before-Get). If valid elements can only be created by463

clients and added using Add(e) the property trivially holds. If valid elements can be created464

by, for example Byzantine servers, then they can inject elements in the_set and history465

of correct servers without using Add(). They can either execute directly a BRB.Broadcast466

or directly via the SBC in epoch rounds. In these case, Alg. 3 satisfies a weaker version of467

(Add-before-Get) that states that elements returned by Get() are either added by Add(), by468

a BRB.Broadcast or injected in the SBC phase.469

6 Empirical Evaluation470

We have implemented the server code for DSO, BRB and SBC and using these building471

blocks we have implemented Alg. 2 and Alg. 3. Our prototype is written in Golang [12]472

1.16 with message passing using ZeroMQ [29] over TCP. Our testing platform uses Docker473

running on a server with 2 Intel Xeon CPU processors at 3GHz with 36 cores and 256GB474

RAM, running Ubuntu 18.04 Linux64. Each Setchain server node was wrapped in a Docker475

container with no limit on CPU or RAM usage. Alg. 2 implements a Setchain and a DSO as476

two standalone executables that communicate using remote procedure calls on the internal477

14 Setchain: Improving Blockchain Scalabilitywith Byzantine Distributed Sets and Barriers

 0

 200

 400

 600

 800

 1000

 1200

 1400

4 7 10

E
p
o
ch

s
in

c
p
e
r

m
in

u
te

Number of nodes

Epochs

No Byzantine
1 Byzantine

2 Byzantines
3 Byzantines

 10000

 100000

 1x106

 1x107

4 7 10

E
le

m
e
n
ts

 a
d

d
e
d

 p
e
r

m
in

u
te

Number of servers

Add

Alg2.Add
Alg2+Set.Add

Alg3.Add
Alg3+Set.Add

(a) Maximum epoch changes (b) Maximum elements added (no epochs)

 100

 1000

 10000

 100000

 1x106

4 7 10

E
le

m
e
n
ts

 a
d

d
e
d

 p
e
r

m
in

u
te

Number of servers

Add

Alg2.Add
Alg2+Set.Add

Alg3.Add
Alg3+Set.Add

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 500000

4 7 10

E
le

m
e
n
ts

 a
d

d
e
d

 p
e
r

m
in

u
te

Number of nodes

Alg3+set with 1 epoch per second

No Byzantine
1 Byzantine

2 Byzantines
3 Byzantines

(c) Maximum elements added (with epochs) (d) Silent Byzantine effect in adds

0 200 400 600 800 1000 1200 1400 1600
time (s)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

tim
e

to
 st

am
p

(s
)

max
avg
every 1000 epoch

0 200 400 600 800 1000 1200 1400 1600
time (s)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

tim
e

to
 st

am
p

(s
)

max
avg
every 1000 epoch

(e) Time to stamp (Alg. 3) (f) Time to stamp (Alg. 3 with aggregation)

Figure 1 Experimental results. Alg. 2+set and Alg. 3+set are the versions of the algorithms
with aggregation. Byzantine servers are simply silent.

loopback network interface of the Docker container. The RPC server and client are taken478

from the Golang standard library. For Alg. 3 everything resides in a single executable.479

For both algorithms, we evaluate two versions, one where each element inserted causes a480

broadcast and another where servers aggregate locally inserted elements until a maximum481

message size (of 106 elements) or a maximum element timeout (of 5s) is reached. In all cases482

elements have 116-126 bytes.483

We evaluate empirically the following hypothesis:484

(H1): The maximum rate of elements that can be inserted is much higher than the485

maximum epoch rate.486

(H2): Alg. 3 performs better than Alg. 2.487

(H3): The aggregated versions perform better than the basic versions.488

(H4) Silent Byzantine servers do not affect dramatically the performance.489

(H5) The performance does not degrade over time.490

To evaluate these hypotheses, we carried out the experiments described below and reported491

in Fig. 1. In all cases, operations are injected by clients running within the same Docker492

container. Resident memory was always enough such that in no experiment the operating493

system needed to recur to disk swapping. All the experiments consider deployments with 4,494

7, or 10 server nodes, and each running experiment reported is taken from the average of 10495

M. Capretto and M. Ceresa and A. Fernández Anta and A. Russo and C. Sánchez 15

executions.496

We tested first how many epochs per minute our Setchain implementations can handle.497

In these runs, we did not add any element and we incremented the epoch rate to find out498

the smallest latency between an epoch and the subsequent one. We run it with 4, 7, and 10499

nodes, with and without Byzantines servers. This is reported in Fig. 1(a).500

In our second experiment, we estimated empirically how many elements per minute can501

be added using our four different implementations of Setchain (Alg. 2 and Alg. 3 with and502

without aggregation), without any epoch increment. This is reported in Fig. 1(b). In this503

experiment Alg. 2 and Alg. 3 perform similarly. With aggregation Alg. 2 and Alg. 3 also504

perform similarly, but one order of magnitude better than without aggregation, confirming505

(H3). Putting together Fig. 1(a) and (b) one can conclude that sets are three orders of506

magnitude faster than epoch changes, confirming (H1).507

In our third experiment, we compare the performance of our implementations combining508

epoch increments and insertion of elements. We set the epoch rate at 1 epoch change per509

second and calculated the maximum add ratio. The outcome is reported in Fig. 1(c), which510

shows that Alg. 3 outperforms Alg. 2. In fact, Alg. 3+set even outperforms Alg. 2+set by a511

factor of roughly 5 for 4 nodes and by a factor of roughly 2 for 7 and 10 nodes. Alg. 3+set can512

handle 8x the elements added by Alg. 3 for 4 nodes and 30x for 7 and 10 nodes. The benefits513

of Alg. 3+set over Alg. 3 increase as the number of nodes increase because Alg. 3+set avoids514

the broadcasting of elements which generates a number of messages that is quadratic in the515

number of nodes in the network. This experiment confirms (H2) and (H3). The difference516

between Alg. 3 and Alg. 2 was not observable in the previous experiment (without epoch517

changes) because the main difference is in how servers proceed to collect elements to vote518

during epoch changes.519

The next experiment explores how silent Byzantine servers affect Alg. 3+set. We520

implement silent Byzantine servers and run for 4,7 and 10 nodes with an epoch change ratio521

of 1 per second, calculating the maximum add rate. This is reported in Fig. 1(d). Silent522

Byzantine servers degrade the speed for 4 nodes as in this case the implementation considers523

the silent server very frequently in the validation phase, but it can be observed that this524

effect is much smaller for larger number of servers, validating (H4).525

In the final experiment, we run 4 servers for a long time (30 minutes) with an epoch526

ratio of 5 epochs per second and add requests to 50% of the maximum rate. We compute527

the time elapsed between the moment in which the client requests an add and the moment528

at which the element is stamped. Fig. 1(e) and (f) show the maximum and average times529

for the elements inserted in the last second. In the case of Alg. 3, the worst case during530

the 30 minutes experiment was around 8 seconds, but the majority of the elements were531

inserted within 1 sec or less. For Alg. 3+set the maximum times were 5 seconds repeated in532

many occasions during the long run (5 seconds was the timeout to force a broadcast). This533

happens when an element fails to be inserted using the set consensus and ends up being534

broadcasted. In both cases the behavior does not degrade with long runs, confirming (H5).535

Considering that epoch changes is essentially a set consensus, our experiments suggest that536

inserting elements in a Setchain is three orders of magnitude faster than performing consensus.537

However, a full validation of this hypothesis would require to fully implement Setchain on538

performant gossip protocols and compare with comparable consensus implementations.539

16 Setchain: Improving Blockchain Scalabilitywith Byzantine Distributed Sets and Barriers

Algorithm 4 Correct client protocol for DPO (for Alg. 2 and 3).

1: function DPO.Add(e)
2: call Add(e) in f + 1 different servers.
3: function DPO.Get()
4: call Get() in at least 3f + 1 different servers.
5: wait 2f + 1 resp s.(the_set, history, epoch)
6: S ← {e|e ∈ s.the_set in at least f + 1 servers s}
7: H ← ∅
8: i← 1
9: N ← {s : s.epoch ≥ i}
10: while ∃E : |{s ∈ N : s.history(i) = E}| ≥ f + 1 do
11: H ← H ∪ {〈i, E〉}
12: N ← N \ {s : s.history(i) 6= E}
13: N ← N \ {s : s.epoch = i}
14: i← i + 1
15: return (S, H, i− 1)
16: function DPO.EpochInc(h)
17: call EpochInc(h) in f + 1 different servers.

7 Distributed Partial Order Objects (DPO)540

The algorithms presented in Section 4 and the proofs in Section 5 consider the case of clients541

contacting a correct server. Obviously, client processes do not know if they are contacting a542

Byzantine or correct process, so a client protocol is required to encapsulate the details of the543

distributed system. We describe now such a client protocol inspired by the one for DSO [5],544

which involves the exchange of several more messages than contacting a single server with a545

request. We later describe a more efficient “try and check” alternative.546

The general idea of the client protocol is to interact with enough servers to guarantee547

that some are correct and ensure the desired behavior. The Setchain API has methods that548

wait for a result (Get) and methods that do not require a response (EpochInc and Add).549

Alg. 4 shows the client protocol. To guarantee contacting at least one correct server, we need550

to send f + 1 messages. Note that each message may trigger different broadcasts.551

The wrapper algorithm for function Get can be split in two parts. First, the protocol552

contacts 3f + 1 nodes, and waits for at least 2f + 1 responses (f Byzantine servers may refuse553

to respond). The response from server s is (s.the_set, s.history, s.epoch). The protocol554

then computes S as those elements known to be in the_set by at least f + 1 servers (which555

includes at least one correct server). To compute H, the code goes incrementally epoch by556

epoch as long as at least f + 1 servers within the set N (which is initialized with all the557

servers that responded with non-empty histories) agree on a set E of elements in epoch i.558

If f + 1 servers agree that E is the set of elements in epoch i, this is indeed the case. We559

also remove from N those servers that either do not know more epochs or that incorrectly560

reported something different than E. Once this process ends, the sets S and H, and the561

latest processed epoch are returned. It is guaranteed that history ⊆ the_set.562

We also present an alternative faster optimistic client. In this approach correct servers563

sign cryptographically a hash of the set of elements in an epoch, and insert this hash in564

the Setchain as an element. Clients only perform a single Add(e) request to one server,565

hoping it will be a correct server. After waiting for some time, the client invokes a Get from566

a single server (which again can be Byzantine) and check whether e is in some epoch signed567

by (at least) f + 1 servers, in which case the epoch is correct and e has been successfully568

M. Capretto and M. Ceresa and A. Fernández Anta and A. Russo and C. Sánchez 17

inserted and stamped. Note that this requires only one message per Add and one message569

per Get.570

8 Concluding Remarks571

We presented a novel distributed data-type, called Setchain, that implements a grow-only set572

with epochs, and tolerates Byzantine server nodes. We provided a low-level specification of573

desirable properties of Setchains and presented three distributed implementations, where the574

most efficient one uses Byzantine Reliable Broadcast and RedBelly set Byzantine consensus.575

Our preliminary empirical evaluation suggests that the performance of inserting elements in576

Setchain is three orders of magnitude faster than with consensus.577

Future work includes developing the motivating applications listed in the introduction,578

for example, mempool logs using Setchains, and L2 faster optimistic rollups. We will also579

study how to equip blockchains with Setchain (synchronizing blocks and epochs) to allow580

smart-contracts to access the Setchain. An important problem to solve is how clients of the581

Setchain pay for the usage (even if a much smaller fee than for the blockchain itself).582

Setchain may be used to implement a solution to front-running. Mempools encode583

information about what it is about to happen in blockchains, so anyone observing them can584

predict the next operations to be mined, and take actions to their benefit. Front-running is585

the action of observed transaction request and maliciously inject transactions to be executed586

before the observed ones [9, 30] (by paying a higher fee to a miner). Setchain can be used587

to detect front-running since it can serve as a basic mechanism to build a mempool that is588

efficient and serves as a log of requests. Additionally, Setchains can be used as a building589

block to solve front-running where users encrypt their requests using a multi-signature590

decryption scheme, where participant decrypting servers decrypt requests after they are591

chosen for execution by miners once the order has already been fixed.592

Our Setchain exploits a specific partial orders that relaxes the total order imposed by593

blockchains. As future we will explore other partial orders and their uses, for example,594

federations of Setchain, one Setchain per smart-contract, etc.595

There are also interesting problems for foundational future work. Alg. 3 shows that596

Byzantine tolerant building blocks do not compose efficiently, because each building is597

pessimistic and does not exploit the fact that when building a correct sever, the client of598

the Byzantine tolerant building block is correct. Also, our analysis shows that Byzantine599

behavior of server nodes can be modeled by a collection of simple interactions with BRB and600

SBC, so it is possible to model all Byzantine behavior to simplify reasoning.601

References602

1 Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers, Eran603

Tromer, and Madars Virza. Zerocash: Decentralized anonymous payments from bitcoin. In604

Proc. of S&P’14, pages 459–474, 2014. doi:10.1109/SP.2014.36.605

2 Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. Succinct non-interactive606

Zero Knowledge for a von Neumann architecture. In Proc. of USENIX Sec.’14, pages 781–796.607

USENIX, August 2014. URL: https://www.usenix.org/conference/usenixsecurity14/608

technical-sessions/presentation/ben-sasson.609

3 Gabriel Bracha. Asynchronous byzantine agreement protocols. Inf. Comput., 75(2):130–143,610

1987. doi:10.1016/0890-5401(87)90054-X.611

4 Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors for reliable distributed612

systems. J. ACM, 43(2):225–267, mar 1996. doi:10.1145/226643.226647.613

https://doi.org/10.1109/SP.2014.36
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/ben-sasson
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/ben-sasson
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/ben-sasson
https://doi.org/10.1016/0890-5401(87)90054-X
https://doi.org/10.1145/226643.226647

18 Setchain: Improving Blockchain Scalabilitywith Byzantine Distributed Sets and Barriers

5 Vicent Cholvi, Antonio Fernández Anta, Chryssis Georgiou, Nicolas Nicolaou, Michel Raynal,614

and Antonio Russo. Byzantine-tolerant distributed grow-only sets: Specification and applica-615

tions. In Proc. of FAB’21, page 2:1–2:19, 2021.616

6 Tyler Crain, Christopher Natoli, and Vincent Gramoli. Red belly: A secure, fair and scalable617

open blockchain. In Proc. of S&P’21, pages 466–483, 2021. doi:10.1109/SP40001.2021.00087.618

7 F. Cristian, H. Aghili, R. Strong, and D. Volev. Atomic broadcast: from simple message619

diffusion to byzantine agreement. In 25th Int’l Symp. on Fault-Tolerant Computing, pages620

431–, 1995. doi:10.1109/FTCSH.1995.532668.621

8 Kyle Croman, Christian Decker, Ittay Eyal, Adem Efe Gencer, Ari Juels, Ahmed Kosba, An-622

drew Miller, Prateek Saxena, Elaine Shi, Emin Gün Sirer, Dawn Song, and Roger Wattenhofer.623

On scaling decentralized blockchains. In Financial Crypto. and Data Security, pages 106–125.624

Springer, 2016.625

9 Philip Daian, Steven Goldfeder, T. Kell, Yunqi Li, X. Zhao, Iddo Bentov, Lorenz Breidenbach,626

and A. Juels. Flash boys 2.0: Frontrunning in decentralized exchanges, miner extractable627

value, and consensus instability. Proc. of S&P’20, pages 910–927, 2020.628

10 Hung Dang, Tien Tuan Anh Dinh, Dumitrel Loghin, Ee-Chien Chang, Qian Lin, and Beng Chin629

Ooi. Towards scaling blockchain systems via sharding. In Proc. of SIGMOD’19, pages 123—-140.630

ACM, 2019. doi:10.1145/3299869.3319889.631

11 Xavier Défago, André Schiper, and Péter Urbán. Total order broadcast and multicast632

algorithms: Taxonomy and survey. ACM Comput. Surv., 36(4):372–421, dec 2004. doi:633

10.1145/1041680.1041682.634

12 Alan A.A. Donovan and Brian W. Kernighan. The Go Programming Language. Adison-Wesley,635

2015.636

13 Antonio Fernández Anta, Chryssis Georgiou, Maurice Herlihy, and Maria Potop-Butucaru.637

Principles of Blockchain Systems. Morgan & Claypool Publishers, 2021.638

14 Antonio Fernández Anta, Kishori Konwar, Chryssis Georgiou, and Nicolas Nicolaou. Formaliz-639

ing and implementing distributed ledger objects. ACM Sigact News, 49(2):58–76, 2018.640

15 Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility of distributed641

consensus with one faulty process. JACM, 32(2):374–382, 1985. doi:10.1145/3149.214121.642

16 Rachid Guerraoui, Petr Kuznetsov, Matteo Monti, Matej Pavlovic, and Dragos-Adrian Sered-643

inschi. The consensus number of a cryptocurrency. In Proc. of PODC’19, pages 307–316.644

ACM, 2019. doi:10.1145/3293611.3331589.645

17 Maxim Jourenko, Kanta Kurazumi, Mario Larangeira, and Keisuke Tanaka. Sok: A taxonomy646

for layer-2 scalability related protocols for cryptocurrencies. IACR Cryptol. ePrint Arch.,647

2019:352, 2019.648

18 Harry Kalodner, Steven Goldfeder, Xiaoqi Chen, S. Matthew Weinberg, and Edward W.649

Felten. Arbitrum: Scalable, private smart contracts. In 27th USENIX Security Symposium,650

pages 1353–1370. USENIX Assoc., 2018. URL: https://www.usenix.org/conference/651

usenixsecurity18/presentation/kalodner.652

19 Jae Kwon and Ethan Buchman. Cosmos whitepaper, 2019.653

20 Zamani Mahdi, Mahnush Movahedi, and Mariana Raykova. Rapidchain: Scaling blockchain654

via full sharding. In Proc. of CSS’18, pages 931—-948. ACM, 2018. doi:10.1145/3243734.655

3243853.656

21 Satoshi Nakamoto. Bitcoin: a peer-to-peer electronic cash system, 2009.657

22 Joseph Poon and Thaddeus Dryja. The bitcoin lightning network: Scalable off-chain instant658

payments, 2016. URL: https://lightning.network/lightning-network-paper.pdf.659

23 Michel Raynal. Fault-Tolerant Message-Passing Distributed Systems: An Algorithmic Approach.660

01 2018. doi:10.1007/978-3-319-94141-7.661

24 Robinson, Dan and Konstantopoulos, Georgios. Ethereum is a dark forest, 2020. URL:662

https://medium.com/@danrobinson/ethereum-is-a-dark-forest-ecc5f0505dff.663

https://doi.org/10.1109/SP40001.2021.00087
https://doi.org/10.1109/FTCSH.1995.532668
https://doi.org/10.1145/3299869.3319889
https://doi.org/10.1145/1041680.1041682
https://doi.org/10.1145/1041680.1041682
https://doi.org/10.1145/1041680.1041682
https://doi.org/10.1145/3149.214121
https://doi.org/10.1145/3293611.3331589
https://www.usenix.org/conference/usenixsecurity18/presentation/kalodner
https://www.usenix.org/conference/usenixsecurity18/presentation/kalodner
https://www.usenix.org/conference/usenixsecurity18/presentation/kalodner
https://doi.org/10.1145/3243734.3243853
https://doi.org/10.1145/3243734.3243853
https://doi.org/10.1145/3243734.3243853
https://lightning.network/lightning-network-paper.pdf
https://doi.org/10.1007/978-3-319-94141-7
https://medium.com/@danrobinson/ethereum-is-a-dark-forest-ecc5f0505dff

M. Capretto and M. Ceresa and A. Fernández Anta and A. Russo and C. Sánchez 19

25 Muhammad Saad, Laurent Njilla, Charles Kamhoua, Joongheon Kim, DaeHun Nyang, and Aziz664

Mohaisen. Mempool optimization for defending against DDoS attacks in PoW-based blockchain665

systems. In Proc. of ICBC’19, pages 285–292, 2019. doi:10.1109/BLOC.2019.8751476.666

26 Muhammad Saad, My T. Thai, and Aziz Mohaisen. POSTER: Deterring DDoS attacks on667

blockchain-based cryptocurrencies through mempool optimization. In Proc. of ASIACCS’18,668

pages 809––811. ACM, 2018. doi:10.1145/3196494.3201584.669

27 Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski. Convergent and Com-670

mutative Replicated Data Types. Bulletin- European Association for Theoretical Computer671

Science, (104):67–88, June 2011. URL: https://hal.inria.fr/hal-00932833.672

28 Nick Szabo. Smart contracts: Building blocks for digital markets. Extropy, 16, 1996.673

29 The ZeroMQ authors. Zeromq, 2021. https://zeromq.org. URL: https://zeromq.org.674

30 Christof Ferreira Torres, Ramiro Camino, and Radu State. Frontrunner jones and the raiders675

of the Dark Forest: An empirical study of frontrunning on the Ethereum blockchain. In Proc676

of USENIX Sec.’21, pages 1343–1359, 2021. URL: https://www.usenix.org/conference/677

usenixsecurity21/presentation/torres.678

31 Shobha Tyagi and Madhumita Kathuria. Study on Blockchain Scalability Solutions, page679

394–401. ACM, 2021. URL: https://doi.org/10.1145/3474124.3474184.680

32 Ke Wang and Hyong S. Kim. Fastchain: Scaling blockchain system with informed neighbor681

selection. In Proc. of IEEE Blockchain’19, pages 376–383, 2019. doi:10.1109/Blockchain.682

2019.00058.683

33 Gavin Wood. Ethereum: A secure decentralised generalised transaction ledger. Ethereum684

project yellow paper, 151:1–32, 2014.685

34 Gavin Wood. Polkadot: Vision for a heterogeneous multi-chain framework. White Paper, 21,686

2016.687

35 Cheng Xu, Ce Zhang, Jianliang Xu, and Jian Pei. Slimchain: Scaling blockchain transactions688

through off-chain storage and parallel processing. Proc. VLDB Endow., 14(11):2314–2326, jul689

2021. doi:10.14778/3476249.3476283.690

https://doi.org/10.1109/BLOC.2019.8751476
https://doi.org/10.1145/3196494.3201584
https://hal.inria.fr/hal-00932833
https://zeromq.org
https://www.usenix.org/conference/usenixsecurity21/presentation/torres
https://www.usenix.org/conference/usenixsecurity21/presentation/torres
https://www.usenix.org/conference/usenixsecurity21/presentation/torres
https://doi.org/10.1145/3474124.3474184
https://doi.org/10.1109/Blockchain.2019.00058
https://doi.org/10.1109/Blockchain.2019.00058
https://doi.org/10.1109/Blockchain.2019.00058
https://doi.org/10.14778/3476249.3476283

	1 Introduction
	1.1 The Problem
	1.2 Motivation
	1.2.1 Mempool
	1.2.2 Scalability by L2 Optimistic Rollups
	1.2.3 Sidechain Data

	1.3 Contributions.

	2 Preliminaries
	2.1 Model of Computation
	2.2 Building Blocks
	2.2.1 Byzantine Reliable Broadcast (BRB)
	2.2.2 Byzantine Atomic Broadcast (BAB)
	2.2.3 Byzantine Distributed Grow-only Sets (DSO) Cholvi2021BDSO
	2.2.4 Set Byzantine Consensus (SBC)

	3 The Setchain Distributed Data Structure
	3.1 API and Server State of the Setchain
	3.2 Desired Properties

	4 Implementations
	4.1 Sequential Implementation
	4.2 Distributed Implementations
	4.2.1 First approach. DSO and BAB
	4.2.2 Second approach. Avoiding BAB
	4.2.3 Final approach. BRB and SBC without DSOs

	5 Proof of Correctness
	6 Empirical Evaluation
	7 Distributed Partial Order Objects (DPO)
	8 Concluding Remarks

