
Live SMR in partitionable networks
Alejandro Naser Pastoriza
IMDEA Software Institute, Spain

Gregory Chockler
University of Surrey, UK

Alexey Gotsman
IMDEA Software Institute, Spain

Abstract
SMR protocols ensure the consistency of replicated state in spite of the failure of a fraction of its
processes. Unfortunately, no deterministic algorithm implements SMR in an asynchronous network,
even if a single process may crash. Therefore, these protocols often guarantee safety at all times
and liveness only under synchronous periods. Following these results, there was an interest in
understanding the degree of reliability and synchrony required to solve problems such as consensus
or SMR. Apart from the theoretical interest, such weakenings of partial synchrony also have practical
relevance: network partitions happen in practice and were a source of failures and outages.

We show that in a system with n processes and up to f < n/2 process crashes, SMR can be
solved provided there exist some unknown correct process with f bidirectional links to correct
processes that are eventually timely. In particular, the remaining O(n2) links may have transient or
permanent failures. To this end, we extend the SMR synchronizer abstraction by Bravo et al. [6] to
partitionable networks. We present a formal specification, its bounded-space implementation and
use it to design a provably live SMR protocol. We show that these results are in a sense optimal:
even if correct processes are eventually fully connected by timely links except for one whose either
incoming or outgoing links may be faulty, then consensus cannot be solved.

2012 ACM Subject Classification Theory of computation → Distributed algorithms

Keywords and phrases State machine replication, consensus, partitionable networks.

Funding This work was partially supported by an ERC Starting Grant RACCOON.

1 Introduction

SMR protocols ensure the consistency of replicated state in spite of the failure of a fraction of
its processes. Unfortunately, no deterministic algorithm implements SMR in an asynchronous
network, even if a single process may crash [8]. Therefore, these protocols often guarantee
safety at all times and liveness only under synchronous periods. This is formalized by the
partial synchrony model [7], which stipulates that after some unknown time the system
becomes synchronous, with message delays bounded by an unknown constant and process
clocks tracking real time.

Following these results, there was an interest in understanding the degree of reliability
and synchrony required to solve consensus, and to implement abstractions such as Ω or failure
detectors [1, 2]. Apart from the theoretical interest, such weakenings of partial synchrony
also have practical relevance: network partitions happen in practice and were a source of
failures and outages [3, 4, 9].

Guaranteeing liveness under partial synchrony is already nontrivial. The problem becomes
even harder in the presence of transient link failures due to the difficulty to differentiate
a transient link fault from a process crash. We show that in a system with n processes
and up to f < n/2 process crashes, SMR can be solved provided there exist some unknown
correct process with f bidirectional links to correct processes that are eventually timely. In
particular, the remaining O(n2) links may have transient or permanent failures.

2 Live SMR in partitionable networks

We follow an approach similar to that of [7] where protocols divide their execution into
views, each with a designated leader process that coordinates the protocol execution. If the
leader is faulty or does not have enough connectivity, the processes switch to another view
with a different leader. To ensure liveness, an SMR protocol needs to spend sufficient time
in views that are entered by sufficient correct processes and where the leader has enough
connectivity. The challenge of achieving such view synchronization is that clocks can diverge
and messages that could be used to synchronize processes can get lost or delayed. Even
during the synchrony period faulty links between correct processes may selectively drop or
delay messages, distorting the view of the system a process may have. View synchronizers
[6, 5, 10, 11] encapsulate mechanisms for dealing with this challenge, allowing them to be
reused across protocols. In this paper, we make the following contributions:

We propose a formal specification that extends the SMR synchronizer abstraction from
Bravo et al. [6] to the model of partitionable networks.
We give a bounded-space implementation of an SMR synchronizer and prove that it
satisfies our specification.
We demonstrate the usability of the abstraction by constructing a provably live SMR
protocol.
We show that these results are in a sense optimal: even if correct processes are eventually
fully connected by timely links except for one whose either incoming or outgoing links
may be faulty, then consensus cannot be solved.

2 Related Work

In [4], the authors present a comprehensive study of system failures attributed to network
partitioning faults in widely used distributed systems, and introduce a testing framework that
can inject different types of network partitioning faults. In [3], the analysis is extended to
other popular systems and they introduce a communication layer that is capable of masking
partial network partitionings.

In [9], the authors study the Cloudflare outage on 2020-11-02, analyze Raft’s behavior
during partial network failures and introduce a benchmarking tool that allows to emulate
a range of topologies and failures. Finally, they highlight that the PreVote optimisation
can help with a particular type of failure where faulty nodes repeatedly call leader elections
under partial network partitionings.

In [1], the authors study the feasability of implementing Ω in systems with weak reliability
and synchrony assumptions. It is assumed that there is a timely correct process whose output
links are eventually timely. However, since there are no guarantees on the connectivity of
the output of Ω, this makes it unusable to solve consensus. In [2], these results are extended
to study the degree of synchrony required to implement the leader election failure detector
and solve consensus in partially synchronous systems. They show that to implement Ω and
solve consensus, it is sufficient to have an unknown process having f < n/2 links that are
eventually timely. However, it is assumed that the rest of the links are fair-lossy, making it
an unsuitable model for network partitions.

It is worth noting that a solution to the problem of consensus in partitionable networks
with transient link failures cannot rely in abstractions such as Ω or leader detectors. In
fact, links could selectively let through messages sent by the underlying abstraction while
dropping every message sent by the protocol atop it. As a consequence, the abstraction
would be unable to identify that there is a problem, while rendering the protocol unusable.

A. Naser Pastoriza, A. Gotsman and G. Chockler 3

This motivates the fact that such an underlying abstraction must accept hints from the
protocol atop it to identify potentially faulty processes or links.

3 System Model

We assume a system S composed of n = 2f + 1 processes, out of which at most f can fail
by crashing, i.e., permanently stopping execution. In the latter case the process is faulty,
otherwise it is correct. Processes communicate through directed links that can lose, delay,
reorder or duplicate messages, but not corrupt them. We also assume that processes are
equipped with hardware clocks that can drift unboundedly from real time.

We consider a weakened partial synchrony model [7]. We say that a set H of at least f + 1
correct processes is a hub if there exist a process p ∈ H, called its center, and an unknown
time GSTH after which the following conditions hold: (i) for every q ∈ H, message delays
on the links between p and q are bounded by an unknown δH, and (ii) clocks at processes
in H advance at the same rate as real time. We assume that in the system there exists at
least one hub and let GST = maxH∈S GSTH and δ = maxH∈S δH. Since there can exist only
finitely many hubs, GST and δ are well defined.

4 SMR Synchronizer

We consider the synchronizer interface defined in [6, 10, 11]. Let the views be the set of the
natural numbers, ranged over by v. The abstraction provides two primitives. A new_view(v)
notification at a process indicates that it must enter view v. An advance() request, allows a
process to signal its wish to advance to a higher view.

This section relies on the following notation: given a view v entered by a process pi, we
denote by Ei(v) the time when this happens. We let EH

first(v) and EH
last(v) denote respectively

the earliest and the latest time when a process from a hub H enters v. Also, we let Efirst(v)
and Elast(v) denote respectively the earliest and the latest time when any process enters v.
Given a view v from which a process pi attempts to advance, we denote by Ai(v) the time
when this happens. We let AH

first(v) and AH
last(v) denote respectively the earliest and the

latest time when a process from a hub H attempts to advance from v. Also, we let Afirst(v)
and Alast(v) denote respectively the earliest and the latest time when any process attempts
to advance from v. Finally, given a partial function f , we write f(x)↓ if f(x) is defined, and
f(x)↑ if f(x) is undefined.

4.1 Specification
Our first contribution is the extension of the SMR synchronizer specification to the model of
partitionable networks, in Figure 1. Let H be an arbitrary hub.

The Monotonicity property ensures that, at any given process, its view can only increase.
The Validity property ensures that a process may only enter view v + 1 if some process in
H has called advance while in v. This prevents a process p outside H from disrupting H by
forcing view changes, in cases where p mistakenly suspects H’s leader due to a faulty link.
The Bounded Entry property ensures that, if some process from H enters a view v, then
all processes from H will do so at most 2δ units of time of each other. This only holds if
within 2δ no process from H attempts to advance to a higher view, as this may make some
processes from H skip v and enter a higher view directly. Bounded Entry holds only starting
from some view V, since a synchronizer may not be able to guarantee it for views entered
before GST. The Startup property ensures that if f + 1 processes from H attempt to advance

4 Live SMR in partitionable networks

from view 0, then some process from H enters view 1. The Progress property determines the
conditions under which some process from H will enter the next view v + 1.

Monotonicity. ∀i, v, v′. Ei(v)↓ ∧ Ei(v′)↓ =⇒ (v < v′ ⇐⇒ Ei(v) < Ei(v′))

Validity. ∀i, v. Ei(v + 1)↓ =⇒ AH
first(v)↓ ∧ AH

first(v) < Ei(v + 1)

Bounded Entry. ∃V. ∀v ≥ V. EH
first(v)↓ ∧ ¬(AH

first(v) < EH
first(v) + 2δ)

=⇒ (∀pi ∈ H. Ei(v)↓) ∧ (EH
last(v) ≤ EH

first(v) + 2δ)

Startup. (∃P ⊆ H. |P | = f + 1 ∧ (∀pi ∈ P. Ai(0)↓)) =⇒ EH
first(1)↓

Progress. ∀v. EH
first(v)↓ ∧ (∃P ⊆ H. |P | = f + 1 ∧ (∀pi ∈ P. Ei(v)↓ =⇒ Ai(v)↓))

=⇒ EH
first(v + 1)↓

Figure 1 SMR synchronizer specification. The properties hold for every hub H.

Because a process may mistakenly suspect a leader due to a faulty link, a view change
cannot be triggered based on a single attempt to advance from a view v. Therefore, to switch
to view v + 1, a process must collect sufficient evidence: at least a majority of processes
must have attempted to advance from v, thereby ensuring that at least one process from
each hub whishes to do so. However, a process may wish to advance to a higher view, but all
its outgoing links may be faulty, making it impossible to disseminate its intention. Thus, it
can only be guaranteed that a process from H will enter v + 1, if for some set P of f + 1
processes from H, any process in P entering v eventually invokes advance while in v.

4.2 Implementation
Our second contribution is an algorithm that implements the specification in Figure 1
under our system model. The implementation reuses algorithmic techniques from the SMR
synchronizer by Bravo et al. [6]. However, to support a different model, it requires a different
algorithm, correctness proof and analysis.

1 function advance():
2 send WISH(view + 1) to all;
3 advanced ← TRUE;
4 periodically
5 send ENTER(view) to all;
6 if advanced then
7 send WISH(view + 1) to all;

8 when received ENTER(v)
9 if v > view then

10 enter_view(v);

11 when received WISH(v) from p

12 views[p] ← max(views[p], v);
13 v′ ← max{v | ∃p. views[p] = v ∧

|{q | views[q] ≥ v}| ≥ f + 1};
14 if v′ > view then
15 enter_view(v′);

16 function enter_view(v):
17 view ← v;
18 advanced ← FALSE;
19 trigger new_view(view);
20 send ENTER(view) to all;

Figure 2 A bounded-space SMR synchronizer. The periodic handler fires every ρ units of time.

When a process invokes advance() (line 1), the synchronizer does not immediately move
to the next view v + 1, but disseminates a WISH(v + 1) message announcing its intention.
To reduce the space complexity, a process tracks only the highest view received from each
process (line 12), kept in an array views. The array is then used to compute the (f + 1)st

A. Naser Pastoriza, A. Gotsman and G. Chockler 5

highest view in views (line 13). A process enters a new view once it accumulates a sufficient
number of WISH messages, and thus has collected enough evidence supporting this.

More specifically, a process enters the view stored in the v′ variable when it is greater
than its current view (lines 14 and 15). Thus, a process enters a view v only if it receives
f + 1 WISHes for views ≥ v, and a process may be forced to switch views even if it did not
call advance; the latter helps lagging processes to catch up. Upon entering a view v (line
16), a new_view notification is triggered at the process, indicating that it must enter v (line
19). Next, the process disseminates an ENTER(v) message announcing that is has collected
enough evidence to switch to v (line 20). Therefore, upon the receipt of the message (line 8),
a process can safely enter view v without the need to collect f + 1 WISHes for a view ≥ v by
itself (line 10). In this way, a process p can learn that there is enough evidence to enter a
view, even if some WISHes originate at processes that are not directly connected to p through
correct links.

Finally, to deal with message loss before GST, a process retransmits the most up to
date information it has every ρ units of time, according to its local clock (line 4). It first
retransmits the highest view for which it has collected enough evidence (line 5). Then, if the
process has called advance in the current view (tracked by the advanced flag), it retransmits
the highest WISH it has sent (line 7).

4.3 Correctness
We now show that the algorithm in Figure 2 correctly implements the specification in Figure
1. Proofs ommitted in this section can be found in §A. Let H be an arbitrary hub and
pi.view(t) denote pi’s view at the time t.

I Lemma 1. If a process pi enters a view v, then there exists a process pj ∈ H, a view
v′ ≥ v and a time t < Ei(v) such that pj sends WISH(v′) at t.

I Lemma 2. If a process pi sends WISH(v + 1) at a time t, then Ai(v)↓ ∧ Ai(v) ≤ t.

I Lemma 3. Validity holds: ∀i, v. Ei(v + 1)↓ =⇒ AH
first(v)↓ ∧ AH

first(v) < Ei(v + 1).

Proof. Let i and v be such that Ei(v + 1)↓. By Lemma 1, there exists a process pj ∈ H, a
view v′ ≥ v + 1 and a time t < Ei(v + 1) such that pj sends WISH(v′) at t. Hence, by lines 2
and 7, pj .view(t) = v′ − 1 ≥ v.

Suppose pj .view(t) = v. Then at t, pj sends WISH(v+1). By Lemma 2, Aj(v)↓ ∧ Aj(v) ≤
t < Ei(v + 1). Therefore, AH

first(v)↓ ∧ AH
first(v) ≤ Aj(v) < Ei(v + 1). Suppose pj .view(t) > v.

Let pk be the first process to enter a view > v at a time tk ≤ t. By Lemma 1, there exists a
process pl ∈ H, a view vl ≥ pk.view(tk) > v and a time tl < tk such that pl sends WISH(vl)
at tl. Hence, by lines 2 and 7, pl.view(tl) = vl − 1 ≥ v. Since tl < tk and tk is the earliest
time at which a process has a view > v, pl.view(tl) ≤ v. Hence, vl − 1 = pl.view(tl) = v and
thus vl = v + 1. Therefore, pl sends WISH(v + 1) at tl and, by Lemma 2, Al(v)↓ ∧ Al(v) ≤
tl < tk ≤ t < Ei(v + 1). Therefore, AH

first(v)↓ ∧ AH
first(v) ≤ Al(v) < Ei(v + 1). J

I Lemma 4. ∀v, v′. 0 < v < v′ ∧ Efirst(v′)↓ =⇒ EH
first(v)↓ ∧ EH

first(v) < Efirst(v′).

Proof. Fix v′ ≥ 2 and assume that a process enters v′, so that Efirst(v′)↓. We prove by
induction that for each k satisfying 1 ≤ k ≤ v′ − 1, some process in H enters v′ − k earlier
than Efirst(v′) and thus EH

first(v′ − k)↓ ∧ EH
first(v′ − k) < Efirst(v′).

For the base case, assume that a process enters v′. Then by Lemma 3, there exists a
process pi ∈ H such that Ai(v′−1)↓ ∧ Ai(v′−1) < Efirst(v′). Then pi.view(Ai(v′−1)) = v′−1
and thus Ei(v′ − 1)↓ ∧ Ei(v′ − 1) ≤ Ai(v′ − 1) < Efirst(v′).

6 Live SMR in partitionable networks

For the inductive step, assume that the required holds for some k so that EH
first(v′ −

k)↓ ∧ EH
first(v′ − k) < Efirst(v′). Then by Lemma 3, there exists a process pi ∈ H such that

Ai(v′ − k − 1)↓ ∧ Ai(v′ − k − 1) < EH
first(v′ − k). Then pi.view(Ai(v′ − k − 1)) = v′ − k − 1

and thus Ei(v′ − k − 1)↓ ∧ Ei(v′ − k − 1) ≤ Ai(v′ − k − 1) < EH
first(v′ − k) < Efirst(v′). J

I Lemma 5. Consider a view v > 0 and assume that v is entered by some process in H. If
EH

first(v) ≥ GST and no process in H attempts to advance from v before EH
first(v) + 2δ, then

all processes in H enter v and EH
last(v) ≤ EH

first(v) + 2δ.

Proof. Suppose there exist a process pj ∈ H and a time t ≤ EH
first(v) + 2δ such that

pj .view(t) = v′ > v. By Lemma 4, EH
first(v + 1)↓ ∧ EH

first(v + 1) ≤ EH
first(v′) ≤ t. Thus,

by Lemma 3, AH
first(v)↓ ∧ AH

first(v) < EH
first(v + 1) ≤ t ≤ EH

first(v) + 2δ, contradicting the
assumption that no process in H attempts to advance from v before EH

first(v) + 2δ. Therefore,
for all times t ≤ EH

first(v) + 2δ and processes pj ∈ H, pj .view(t) ≤ v.
Let pc be the center of H and pi be the process in H to enter v at the time EH

first(v).
Upon entering v, pi sends an ENTER(v) message to every process. Since the link between pi

and pc is reliable after GST, the ENTER(v) message is received by pc no later than EH
first(v)+δ,

and thus pc is guaranteed to enter v no later than EH
first(v) + δ. Upon entering v, pc sends

an ENTER(v) message to every process. Since the links between pc and each process in H are
reliable after GST, every process in H receives ENTER(v) no later than EH

first(v) + 2δ.
Fix an arbitrary process pk ∈ H and suppose tk ≤ EH

first(v) + 2δ is a time such that
pk receives the ENTER(v) message sent by pc at tk. If pk.view(tk) = v, then Ek(v) < tk ≤
EH

first(v) + 2δ. If pk.view(tk) < v, then line 9 guarantees that pk enters v at tk, and thus
Ek(v) = tk ≤ EH

first(v) + 2δ. Hence, EH
last(v) ≤ EH

first(v) + 2δ. J

I Lemma 6. For all views v, v′ > 0, if a process sends WISH(v) before sending WISH(v′),
then v ≤ v′.

I Lemma 7. For all processes pi ∈ H, times t ≥ GST + ρ, and views v, if pi sends WISH(v)
at a time ≤ t, then there exists a view v′ ≥ v and a time t′ such that GST ≤ t′ ≤ t and pi

either sends ENTER(v′) or WISH(v′) at t.

I Lemma 8. Startup holds: suppose there exists a set P ⊆ H of f + 1 processes such that
∀pi ∈ P. Ai(0)↓. Then eventually some process in H enters view 1.

Proof. Assume by contradiction that there exists a set P ⊆ H of f + 1 processes such that
∀pi ∈ P. Ai(0)↓, and no process in H enters view 1. By Lemma 4, the latter implies

∀v > 0. ∀pi ∈ H. Ei(v)↑ . (1)

Then by Lemma 2, we have

∀pi. ∀t. ∀v > 1. ¬(pi sends WISH(v) at t ∧ pi ∈ H). (2)

Let T1 = max(GST + ρ,AH
last(0)). Since each pi ∈ P attempts to advance from view 0, each

pi ∈ P sends WISH(1) no later than T1. Since T1 ≥ GST + ρ, by Lemma 7, there exists a
view vi ≥ 1 and a time ti such that GST ≤ ti ≤ T1 and pi either sends ENTER(vi) or WISH(vi)
at ti. If any pi sends ENTER(vi), then EH

first(vi)↓, contradicting (1). Therefore, each pi sends
WISH(vi) at ti. By (2), vi = 1. Let pc be the center of H. Since the links between pc and
each pi are reliable after GST, the WISH(1) message sent by each pi is received by pc.

Thus, there exists a time T2 ≥ T1 by which pc has received the WISH(1) from all processes
in P . By (1), for all times t, pc.view(t) = 0. Also, all entries in pc.views(T2) associated with

A. Naser Pastoriza, A. Gotsman and G. Chockler 7

the processes in P are equal to 1. Since |P | = f + 1: (i) at least f + 1 entries in pc.views(T2)
are equal to 1, and (ii) one of the f + 1 highest entries in pc.views(T2) is equal to 1. From
(i), pc.v

′(T2) ≥ 1, and from (ii), pc.v
′(T2) ≤ 1. Hence, pc.v

′(T2) = 1, and therefore pc enters
view 1 by T2, contradicting (1). J

I Lemma 9. Progress holds: let v > 0 be a view such that EH
first(v)↓ and P ⊆ H be such

that |P | = f + 1 and

∀pi ∈ P. Ei(v)↓ =⇒ Ai(v)↓ . (3)

Then EH
first(v + 1)↓.

Proof. Assume by contradiction that the required does not hold. Then there exists a view
v > 0 such that some process in H enters v, (3) holds, and no process in H enters v + 1. By
Lemma, 4, the latter implies

∀v′ > v. ∀pi ∈ H. Ei(v′)↑ . (4)

Then by Lemma 2, we have

∀pi. ∀t. ∀v′ > v + 1. ¬(pi sends WISH(v′) at t ∧ pi ∈ H). (5)

Let T1 = max(GST + ρ,EH
first(v)) and let pi ∈ H be the first process to enter v. If EH

first(v) ≥
GST, then pi sends an ENTER(v) message at GST or later. If EH

first(v) < GST, and since after
GST the pi’s local clock advances at the same rate as real time, there exists a time s satisfying
GST ≤ s ≤ T1 such that pi executes the retransmission code in line 4 at s. Therefore, at s,
pi sends an ENTER(vi) message and since pi.view is non-decreasing, vi ≥ v. If vi > v, then
pi.view(s) > v, contradicting (4). Therefore, vi ≤ v and thus vi = v. We conclude that
in both cases pi sends an ENTER(v) message at GST or later. Let pc be the center of H.
Since the link between pi and pc is reliable after GST, pc eventually receives the ENTER(v)
message. By (4), pc.view ≤ v upon receipt of this message, and thus pc eventually enters v.
Upon entering v, pc sends an ENTER(v) message, which, by the same argument, is eventually
received by every process in H. By (4), no process in H has view > v upon receipt of this
message, and thus every process in H eventually enters v.

Consider an arbitrary process pj ∈ H and suppose that pj is a member of the set P
stipulated by the lemma’s premise. Since Ej(v)↓, by (3), Aj(v)↓. Let T2 = max(GST +
ρ,AH

last(v)). Then pj has sent a WISH(v+1) by T2. By Lemma 7, there exists a view vj ≥ v+1
and a time t′ such that GST ≤ t′ ≤ T2 and pj either sends ENTER(vj) or WISH(vj) at t′. If pj

sends ENTER(vj) then pj .view(t′) = vj > v, contradicting (4). Therefore, pj sends WISH(vj) at
t′. By (5), vj ≤ v + 1, and therefore vj = v + 1. Since the link between pc and pj is reliable
after GST, the WISH(v + 1) message sent by pj is eventually received by pc.

Thus, there exists a time T3 ≥ T2 by which pc has received the WISH(v + 1) from all
processes in P . By (4), for all times t, pc.view(t) ≤ v. Also, all entries in pc.views(T3)
associated with the processes in P are equal to v + 1. Since |P | = f + 1: (i) at least
f + 1 entries in pc.views(T3) are equal to v + 1, and (ii), one of the f + 1 highest entries in
pc.views(T3) is equal to v + 1. From (i), pc.v

′(T3) ≥ v + 1, and from (ii), pc.v
′(T3) ≤ v + 1.

Hence, pc.v
′(T3) = v + 1, and therefore pc enters view v + 1 by T2, contradicting (4). J

I Theorem 10. The synchronizer satisfies its specification.

Proof. Monotonicity is given by lines 9 and 14. Validity, Startup and Progress are given by
Lemmas 3, 8 and 9, respectively. Let V = max{v | EH

first(v)↓ ∧ EH
first(v) < GST}+ 1. Then

∀v ≥ V. EH
first(v)↓ =⇒ EH

first(v) ≥ GST. Thus, by Lemma 5, Bounded Entry holds. J

Since the hub H was picked arbitrarily, properties in Figure 1 hold for every hub H.

8 Live SMR in partitionable networks

5 SMR in partitionable networks

Our third contribution is a demonstration of how the SMR synchronizer can be used to im-
plement atomic broadcast in partitionable networks, from which SMR can be implemented in
the standard way. The atomic broadcast abstraction provides two primitives. A broadcast(m)
request, allows a process to send an application message to all other processes. A deliver(m)
indication, allows a process to deliver a received message m to its application layer. We
assume that all values broadcast in a single execution are unique.

Because in a partitionable network a correct process may have all its links be faulty, it is
not possible to guarantee liveness for each of them. Hence, we only guarantee progress for
correct processes with sufficient connectivity, i.e., processes in a hub. Thus, we say that an
algorithm is a correct implementation of atomic broadcast in partitionable networks if its
every execution satisfies:

Integrity. No message is delivered more than once.
Validity. If a process delivers m, then m was previously broadcast.
Agreement. If pi delivers m1 and pj delivers m2, then either pi delivers m2 or pj delivers m1.
Total order. If pi delivers m1 before m2, then a process delivering m2 also delivers m1 before m2.
Liveness. There exists a quorum Q such that: (i) if a process p ∈ Q broadcasts a message m, then

p eventually delivers m, and (ii) if a message is delivered by some process, then m is eventually
delivered by every p ∈ Q.

5.1 Implementation
Overview. The protocol uses a leader-based approach. A leader wins an election if it
receives votes from a majority, thereby obtaining the right to propose messages. Once
elected, the leader has started a period of execution called a view. At any time, each process
participates in a single view stored in the variable view.

The leader receives incoming messages and appends them at the end of the array log,
thereby dictating the order in which they should be delivered. To this end, it tracks the last
non-empty slot in the variable next. For fault tolerance, the ordering of the messages needs
to be finalized through consensus, which stipulates a round of notifications from the followers
to the leader. Therefore, the leader propagates the messages to the followers. Upon receiving
a proposal, the followers store it in its local copy of the log array and notify its receiption to
the leader, thereby accepting it. If a majority of followers accept the message, its survival
to any tolerated failure is guaranteed and can therefore be delivered at the participating
processes. The processes persist the position of the last delivered message in the log array in
a variable last_delivered.

When a failure is suspected the processes execute a recovery protocol. The purpose of
the recovery protocol is to elect a new leader that has convinced a quorum of processes
to join its view, and to agree on a common consistent state that is at least as up to date
as the state of any of the participating processes. The second requirement guarantees
that the new leader preserves any messages delivered in previous views. A variable status
tracks whether the process is a leader, a follower or it is in a special recovering
state used during leader changes. To guarantee a consistent state, it is required that the
followers synchronize their state with the leader before they start accepting messages. Since
there can exist multiple failed election attempts, we use an additional view variable cview
to represent the last view in which a process has synchronized its state with that of the leader.

A. Naser Pastoriza, A. Gotsman and G. Chockler 9

1 periodically
2 pre: status = leader;
3 broadcast(nop);

4 when received broadcast(m)
5 periodically until m is delivered
6 send BROADCAST(m) to leader(view);
7 if timer_delivery[m] is disabled then
8 start_timer(timer_delivery[m],

dur_delivery);

9 when received BROADCAST(m)
10 pre: status = leader;
11 pre: m = nop ∨ ∀k. log[k] 6= m;
12 log[next]← m;
13 send ACCEPT(view, next,m) to all;
14 next← next + 1;

15 when received ACCEPT(v, k,m) from pj

16 pre: view = v ∧
status ∈ {leader, follower};

17 log[k]← m;
18 send ACCEPT_ACK(v, k) to pj ;

19 when received a quorum of
ACCEPT_ACK(v, k)

20 pre: view = v ∧ status = leader;
21 send COMMIT(v, k, log[k]) to all;

22 when received COMMIT(v, k,m) from pj

23 pre: view = v ∧ last_delivered + 1 = k;
24 log[k]← m;
25 last_delivered← k;
26 if m 6= nop then
27 deliver(log[k]);
28 stop_timer(timer_commit);
29 stop_timer(timer_delivery[m]);
30 start_timer(timer_commit, dur_commit);

Figure 3 The protocol: failure-free case. The periodic handler fires every ρ units of time.

Failure-free case. In the normal operation of the protocol, a leader proposes a sequence
of messages to its followers to replicate them and ensure the durability of the delivered
messages and its order. Its code is shown in Figure 3.

To transmit a message m, a process sends it in a BROADCAST message (line 6). It keeps
sending the message until it is delivered by the process. The periodic retransmission ensures
that the message will reach the processes despite message loss before GST.

A process acts on the BROADCAST message only when it is the leader (line 10). Upon
receiving the message, the leader checks whether it has previously received it to avoid
delivering the same message more than once (line 11). Otherwise, it appends the message
to the ordered sequence log and performs an analogous to the Phase 2 of Paxos, trying to
convince the processes to accept its proposal. To this end, it sends an ACCEPT message, that
is the analogous to the 2A message of Paxos (line 13). The message carries the view, the
position of the message in the log array and the message m.

A process acts on the ACCEPT message only if it participates in the corresponding view
(line 16). It stores the message in its local copy of the log array and then sends an ACCEPT_ACK
message to its leader, analogous to the 2B message of Paxos (line 18). The message carries
the view and the slot number corresponding to the message being acknowledged.

The leader of the view acts once it receives ACCEPT_ACK messages for a slot k from each
process in a quorum (line 19), in which case the message has been present in the array of a
majority in the same view and slot, and therefore it can survive any tolerated failure. In
this case, the leader notifies the followers that the message can be safely delivered through a
COMMIT message (line 21). The message carries the view, the position of the message in the
log array and the message m.

Upon receiving a COMMIT message (line 22), the process updates last_delivered to track
the prefix of the common global sequence of messages that it has delivered and updates
its array. The messages are delivered in increasing order of slot numbers without gaps as
implied by line 23. Finally, the process delivers the message to its application layer (line 27).

10 Live SMR in partitionable networks

We explain the timers and the broadcast of nops in the recovery case.

31 function start():
32 if view = 0 then
33 advance();

34 upon new_view(v)
35 view ← v;
36 status ← recovering;
37 send STATE(v, cview, log) to leader(v);
38 stop_all_timers();
39 start_timer(timer_recovery, dur_recovery);

40 when received STATE(v, cviewj , logj) from
each pj in a quorum Q

41 pre: view = v ∧ status = recovering;
42 let j0 be such that

∀pj ∈ Q. (cviewj0 , |logj0 |) ≥ (cviewj , |logj |);
43 log← logj0 ;
44 send NEW_STATE(v, log) to P \ {pi};

45 when received NEW_STATE(v, log) from pj

46 pre: view = v ∧ status = recovering;
47 log← log;
48 cview← v;
49 status← follower;
50 send NEW_STATE_ACK(v) to pj ;
51 stop_timer(timer_recovery);
52 start_timer(timer_commit, dur_commit);

53 when received NEW_STATE_ACK(v)
from a set Q such that Q ∪ {pi} is a
quorum

54 pre: view = v ∧ status = recovering;
55 cview← v;
56 status← leader;
57 next← max{k | log[k] 6= ⊥}+ 1;
58 for {k | log[k] 6= ⊥} do
59 send COMMIT(v, k, log[k]) to all;
60 stop_timer(timer_recovery);
61 start_timer(timer_commit, dur_commit);

62 when a timer expires
63 stop_all_timers();
64 dur_commit← dur_commit + τ ;
65 dur_delivery← dur_delivery + τ ;
66 dur_recovery← dur_recovery + τ ;
67 advance();
68 status← advanced;

Figure 4 The protocol: recovery case.

Recovery case. We next explain how the protocol deals with failures by executing the
recovery protocol shown in Figure 4. The goal of the recovery protocol is two-fold: first,
elect a leader who convinces a quorum of processes to participate in its view and to choose a
state that dominates the quorum, i.e., that is at least as up to date as the one of any of
the participating processes; and secondly, guarantee that before a follower starts accepting
proposals from the leader, it has synchronized its state with that of the leader, ensuring this
way that they remain in synchrony.

Triggering view changes. We now describe when a process calls advance, which is key to
ensure liveness. This occurs either on start-up (line 33) or when the process suspects a failure.
To this end, the process monitors that progress is being made in its current view using timers;
if one of these expires, the process calls advance and sets its status to advanced (lines 67
and 68). First, the process checks that each message it receives is delivered promptly to
guard against leader failures. For a message m this is done using timer_delivery[m], set for a
duration dur_delivery when the process receives broadcast(m) (line 8). To ensure that this
timer is not repeatedly reset by the periodic handler in line 5 and thus not allowed to expire,
timer_delivery[m] is set only if it is not already enabled. The timer is stopped when the
process delivers m (line 29). Secondly, the process checks that the leader initializes its view
quickly enough to guard against the leader crashing or advancing to a higher view during
initialization. Thus, when a process enters a view it starts timer_recovery for a duration

A. Naser Pastoriza, A. Gotsman and G. Chockler 11

dur_recovery (line 39). The process stops the timer when it becomes either a follower or
a leader in the current view, and thus it has finished synchronizing its state with that of
the leader. Thirdly, the process monitors the leader’s behavior to check that it is correct,
and that is is supported by a quorum of correct processes through sufficiently good links. It
does so by checking that it often receives COMMIT messages from the leader, and thus the
leader was able to receive a round of notifications from its followers. Thus, upon becoming a
leader or a follower the process starts timer_commit for a duration dur_commit (lines
52 and 61). The timer is stopped when the process receives a COMMIT message (line 28).
However, to continue monitoring the correct behavior in the current view, the process restarts
the timer (line 30). Notice that in particular, this allows the process to check that it delivers
all messages in the initial log. Finally, since it may happen that the leader has no message
to propose, it is possible that no COMMIT messages are sent. This is addressed by the leader
by periodically sending nops, which represent void operations and which are not delivered
to the application layer (line 26).

The above checks may make a process mistakenly suspect a failure if the timeouts are
initially set too small with respect to the unknown message delay δ. Thus, a process increases
dur_commit, dur_delivery and dur_recovery each time a timer expires (lines 64, 65 and 66).

View initialization. When the synchronizer indicates to a process that it must enter a new
view v (line 34), the process sets view to v, ensuring that it will no longer accept messages
from prior views. It also sets status to recovering, signaling that the process is not yet
ready to order messages in the new view. It then sends a STATE message to the leader of v
with the information about the last view in which it synchronized its state with that of the
leader, and the log of messages it has accepted in that view. This is the analogous to the 1B
message of Paxos (line 37).

The leader acts once it receives STATE messages from a quorum of processes. It then
picks the most up to date state as the initial log of the new view (line 42). To finalize the
recovery procedure, the leader must synchronize its state with that of the followers. To this
end, it sends a NEW_STATE message carrying the view and its initial log (line 44).

Upon receipt of a NEW_STATE message, a process overwrites its state with the one provided
by the leader, sets its status to follower an establishes its view number, registering this
way that it has synchronized its state with that of the leader (lines 47, 48 and 49). It then
notifies the reception of the new state by sending a NEW_STATE_ACK message (line 50).

Upon receipt of NEW_STATE_ACK messages from a set of processes that together with the
leader form a quorum, the leader knows that a majority of processes share its state in its
view and therefore sets its view number (line 55), establishes as its leader (line 56), sets next
to the last non-empty slot in the log array (line 57) and notifies that all messages in its log
can be safely delivered (line 58).

5.2 Correctness
We now prove that the protocol satisfies the Liveness property of atomic broadcast. Proofs
ommitted in this section can be found in §B. We say that a process predelivers a message m
if it executes lines 24-30 upon receipt of a COMMIT(_, _,m) message. Fix an arbitrary hub H
and let pc be its center.

I Lemma 11. Let pi be a correct process in view v that never enters a view higher than v.
If pi predelivers only finitely many messages or it never predelivers a message that it has
broadcast while in v, then it eventually calls advance in v.

12 Live SMR in partitionable networks

I Lemma 12. Consider a view v ≥ V such that EH
first(v) ≥ GST and leader(v) = pc. Let

pi ∈ H be a process that enters v. If we have dur_recoveryi(v) > 5δ, dur_deliveryi(v) > 6δ
and dur_commiti(v) > ρ+ 6δ, then pi is not the first process in H to call advance in v.

Proof. Since EH
first(v) ≥ GST, messages between processes in H and pc sent after EH

first(v)
get delivered within δ and clocks at processes in H track real time. By contradiction, assume
that pi is the first process in H to call advance in v. This only occur if a timer expires at pi.

Suppose that timer_recovery expires at pi. Because pi is the first process to call advance
in v and dur_recoveryi(v) > 5δ, no process in H calls advance in v until after EH

first(v) + 5δ.
Then by Bounded Entry all processes in H enter v by EH

first(v) + 2δ. By Validity no process
can enter v + 1 until after EH

first(v) + 5δ, and by Lemma 4 the same holds for any view > v.
Thus, all processes in H stay in v at least until EH

first(v) + 5δ.
When a process in H enters v it sends a STATE message to pc, which happens by

EH
first(v) + 2δ. When pc receives STATE messages from a quorum of processes, it broadcasts

a NEW_STATE message. Thus, by EH
first(v) + 4δ all processes in H other than pc receive this

message, thereby stopping the timer timer_recovery (line 51). Upon receipt of a NEW_STATE
message, a process replies with a NEW_STATE_ACK (line 50). Thus, by EH

first(v)+5δ the process
pc receives a quorum of NEW_STATE_ACK messages, thereby stopping the timer timer_recovery
(line 60). In either case, pi is guaranteed to stop the timer timer_recovery by EH

first(v) + 5δ,
which contradicts the assumption that timer_recovery expires at pi while in v.

Suppose that timer_commit expires at pi after being initiated at a time t ≥ EH
first(v).

Because pi is the first process in H to call advance in v and dur_commiti(v) > ρ + 6δ, no
process in H calls advance in v until after t+ ρ+ 6δ. Then, by Bounded Entry all processes
in H enter v by EH

first(v) + 2δ. By Validity no process can enter v + 1 until after t+ ρ+ 6δ,
and by Lemma 4 the same holds for any view > v. Thus, all processes in H stay in v at least
until t+ ρ+ 6δ.

By the time t, the process pc has sent a NEW_STATE message that is received by every
other process in H no later than t + δ. Since all processes in H enter v by t + 2δ, every
process in H that is 6= pc is guaranteed to be a follower by this time. Thus, by t + 3δ,
pc receives NEW_STATE_ACK from every other process in H, thereby becoming a leader.
Since the periodic handler at line 1 fires every ρ units of time and the clock at pc tracks
real time, it is guaranteed that pc sends an ACCEPT(v, k,nop) message by t+ ρ+ 3δ, with
k ≥ |pc.log(t)| ≥ |pi.log(t)| ≥ pi.last_delivered(t). Thus, by t + ρ + 4δ, every process in H
receives and replies this message with an ACCEPT_ACK(v, k), received by pc by t + ρ + 5δ.
Upon receipt of these messages, pc sends a COMMIT(v, k,nop), received by every process
in H by t + ρ + 6δ. Thus, by t + ρ + 6δ, pi receives a COMMIT(v, k,nop) message with
k ≥ pi.last_delivered(t) + 1. The fifoness of the links guarantees that before receiving
COMMIT(v, k, _), pi received COMMIT(v, k′, _) for all k′ satisfying 1 ≤ k′ ≤ k. Therefore, pi has
received a COMMIT(v, k′, _) message with k′ = pi.last_delivered(t) + 1 no later than t+ ρ+ 6δ,
thereby stopping the timer timer_commit (line 28), which contradicts the assumption that
timer_commit expires at pi while in v.

Suppose that timer_delivery[m] expires at pi after being initiated at a time t ≥ EH
first(v).

Because pi is the first process in H to call advance in v and dur_deliveryi(v) > 6δ, no process
in H calls advance in v until after t+ 6δ. Then, by Bounded Entry all processes in H enter v
by EH

first(v) + 2δ. By Validity no process can enter v + 1 until after t+ 6δ, and by Lemma 4
the same holds for any view > v. Thus, all processes in H stay in v at least until t+ 6δ.

By the time t, the process pc has sent a NEW_STATE message that is received by every
other process in H no later than t+δ. Since all processes in H enter v by t+2δ, every process
in H that is 6= pc is guaranteed to be a follower by this time. Thus, by t+ 3δ, pc receives

A. Naser Pastoriza, A. Gotsman and G. Chockler 13

NEW_STATE_ACK from every other process in H, thereby becoming a leader. Furthermore,
by t+ 3δ the process pc receives the BROADCAST(m) message sent by pi at t (line 6). Then
there exists k such that pc sends an ACCEPT(v, k,m) message by t + 3δ. Thus, by t + 4δ,
every process in H receives and replies this message with an ACCEPT_ACK(v, k), received by
pc by t+ 5δ. Upon receipt of these messages, pc sends a COMMIT(v, k,m), received by every
process in H by t+ 6δ. Thus, by t+ 6δ, pi receives a COMMIT(v, k,m). The fifoness of the
links guarantees that before receiving COMMIT(v, k,m), pi received COMMIT(v, k′, _) for all k′

satisfying 1 ≤ k′ ≤ k. Therefore, by t+ 6δ, pi has last_delivered + 1 = k and thus it stops the
timer timer_delivery[m] (line 29), which contradicts the assumption that timer_delivery[m]
expires at pi while in v. J

I Lemma 13. Consider a view v ≥ V such that EH
first(v) ≥ GST and leader(v) = pc. If at

each process pi ∈ H that enters v we have dur_recoveryi(v) > 5δ, dur_deliveryi(v) > 6δ and
dur_commiti(v) > ρ+ 6δ, then no process in H calls advance in v.

I Lemma 14. Let v be a view and Q be a quorum of correct processes such that

∃t. ∀pi ∈ Q. ∀t′ ≥ t. pi.view(t′) = v ∧ pi.status(t′) ∈ {leader, follower}. (6)

Then (i) if a process p ∈ Q broadcasts a message m, then p eventually delivers m, and (ii) if
a message m is delivered by some process, then m is eventually delivered by every p ∈ Q.

Proof. Suppose that a process pj ∈ Q broadcasts a message m 6= nop but that it never
predelivers it. Since as long as pj does not predeliver m it continues to periodically broadcast
it (line 6), there exists a time at which pj broadcasts m while in v. Since pj never predelivers
m and never enters a view higher than v, by Lemma 11, pj calls advance while in v and sets
its status to advanced, contradicting (6). Therefore, pj eventually predelivers m. Since
m 6= nop, pj delivers m.

Suppose now that a process delivers a message m 6= nop upon receipt of a COMMIT(_, k,m)
message. Let pj be an arbitrary process in Q. We show that pj .last_delivered is unbounded.
By contradiction, assume there exists a k′ such that pj .last_delivered(t) ≤ k′ for all times t
and pj .last_delivered(t′) = k′ for some t′. Then, the timer timer_commit eventually expires
at pj while in view v. Indeed, upon becoming a leader or a follower at v, or when it
predelivers pj .log[k′], whichever happens last, the process pj starts the timer timer_commit
(lines 52, 61 and 30). The precondition at line 23 ensures that this timer can only be stopped
upon receipt of a COMMIT(v, k′ + 1, _) message. However, if this was the case, pj would
increase pj .last_delivered to k′ + 1 (line 25) contradicting the fact that it is bounded by
k′. Therefore, timer_commit eventually expires and thus pj calls advance while in v. As a
consequence, pj sets its status to advanced, contradicting (6). Hence, there exists a time t′
such that pj .last_delivered(t′) ≥ k. Therefore, there exists a time t′′ ≤ t′ such that pj receives
COMMIT(_, k,m′) at t′′ upon which pj predelivers m′. By safety m′ = m and since m 6= nop,
pj delivers m. Since pj was picked arbitrarily, every process in Q delivers m. J

I Lemma 15. There exists a quorum Q such that: (i) if a process p ∈ Q broadcasts a
message m, then p eventually delivers m, and (ii) if a message m is delivered by some
process, then m is eventually delivered by every p ∈ Q.

Proof. By contradiction, assume there is no quorum validating the lemma. We prove that
in this case the protocol keeps moving through views forever.

Claim 1. Every view is entered by some process in H.

14 Live SMR in partitionable networks

Proof. Since all processes in H call start, by Startup a process in H eventually enters view 1.
Assume the contrary, so that there exists a maximal view v entered by any process in H. Let
P ⊆ H be any set of f + 1 processes and consider an arbitrary process pi ∈ P that enters v.

We show that pi must predeliver only finitely many messages while in view v. Assume the
contrary, so that pi predelivers infinitely many messages while in view v. The precondition
at line 23 guarantees that the process does so upon receipt of COMMIT(v, k′, _) for all k′ ≥ k,
for some k. Therefore, for each k′, there exists a quorum of processes Qk′ that reply to
the ACCEPT(v, k′, _) message sent by leader(v) with an ACCEPT_ACK(v, k′). Since there exist
only finitely many quorums, there exists a quorum Q of correct processes such that Q = Qk′

for infinitely many values of k′. The precondition at line 16 and the fact that view never
decreases at a process ensures that

∃t. ∀pi ∈ Q. ∀t′ ≥ t. pi.view(t′) = v ∧ pi.status(t′) ∈ {leader, follower} (7)

Thus, by Lemma 14, Q validates the lemma, contradicting the hypothesis that there
is no such quorum. Therefore, it cannot be the case that pi predelivers infinitely many
messages while in view v. Then by Lemma 11, pi eventually calls advance while in v. Since
pi was picked arbitrarily, we have ∀pi ∈ P. Ei(v)↓ =⇒ Ai(v)↓. By Progress, EH

first(v + 1)↓,
which yields a contradiction. Thus, processes in H keep entering views forever. The claim
follows from Lemma 4 ensuring that, if a view is entered by a process in H, then so are all
preceding views. J

Let view v1 be the first view such that v1 ≥ V and EH
first(v1) ≥ GST; such a view exists

by Claim 1. We next show that processes in H will increase their timeouts high enough to
satisfy the bounds in Lemma 13.

Claim 2. Every process in H calls the timer expiration handler (line 62) infinitely often.

Proof. Assume the contrary and let Cfin and Cinf be the sets of processes in H
that call the timer expiration handler finitely and infinitely often, respectively. Then
Cfin 6= ∅, and by Claim 1 and Validity, Cinf 6= ∅. The values of dur_commit, dur_delivery
and dur_recovery increase unboundedly at processes from Cinf , and do not change after some
view v2 at processes from Cfin. By Claim 1 and since leaders rotate round-robin, there
exists a view v3 ≥ max{v1, v2} led by pc such that any process pi ∈ Cinf that enters v3 has
dur_commiti > ρ+ 6δ, dur_deliveryi > 6δ and dur_recoveryi > 5δ. By Claim 1 and Validity,
at least one process in H calls advance in v3; let pl be the first process to do so. Because
v3 ≥ v2, this process cannot be in Cfin, since none of these processes can increase their
timers in v3. Then pl ∈ Cinf , contradicting Lemma 13. J

By Claims 1 and 2, there exists a view v4 ≥ v1 led by pc such that some process in
H enters v4, and for any process pi ∈ H that enters v4 we have dur_commiti > ρ + 6δ,
dur_deliveryi > 6δ and dur_recoveryi > 5δ. By Lemma 13, no process in H calls advance in
v4. On the other hand, by Claim 1, some process in H enters v4 + 1. By Validity, some
process in H calls advance in v4, which is a contradiction. J

6 An impossibility result

Our fourth contribution is to show that our results are in a sense optimal: even if correct
processes are eventually fully connected by timely links except for one whose either incoming
or outgoing links may be faulty, then consensus cannot be solved.

A. Naser Pastoriza, A. Gotsman and G. Chockler 15

An impossibility result for an f-clique + 1 incoming link. Assume a model where
there is a time after which there are f correct processes fully connected by timely links and
one extra incoming timely link into the clique from an (f + 1)st correct process.

I Theorem 16. There does not exist a deterministic algorithm implementing consensus in
the above model.

Proof. Suppose for the sake of contradiction that there exists such an algorithm. Let G1 be
the set {1, . . . , f}, G2 be the set {f + 1} and G3 be the set {f + 2, . . . , n}.

Let C1 be a configuration where G1 ∪ G2 form the majority stipulated by the system
model where processes from G1 constitute a clique and there is a timely link from process
f + 1 into G1. Furthermore, assume that processes from G3 are initially crashed and that
any other link from/to process f + 1 drop all messages. Let α1 be an execution of the system
in C1 that contains an invocation propose(v1) by process 1 and no other invocations. By
Termination, a process from G1 eventually decides with a matching decide(v1). Let α′

1 be
the prefix of α1 ending with decide(v1).

Let C2 be a configuration where G3 ∪ G2 form the majority stipulated by the system
model where processes from G3 constitute a clique and there is a timely link from process
f + 1 into G3. Furthermore, assume that processes from G1 are initially crashed and that
any other link from/to process f + 1 drop all messages. Let α2 be an execution of the
system in C2 that contains an invocation propose(v2) by process n with v2 6= v1 and no
other invocations. By Termination, a process from G3 eventually decides with a matching
decide(v2). Let α′

2 be the prefix of α2 ending with decide(v2).
Let s1 and s2 be the sequences of actions performed by process f + 1 in α′

1 and α′
2,

respectively. Since the process f +1 is deterministic, either s1 is a prefix of s2 or s2 is a prefix
of s1. Let β = s2 − s1 if s1 is a prefix of s2 or ε otherwise. Let α′′

1 = α′
1β be an execution in

which all actions occur before GST. Since the actions performed by the process f + 1 do not
depend on any input, this is a valid execution in C1. Let γ = s1 − s2 if s2 is a prefix of s1 or
ε otherwise. Let α′′

2 = α′
2γ be an execution in which all actions occur before GST. Since the

actions performed by the process f + 1 do not depend on any input, this is a valid execution
in C2. Notice that α′′

1 and α′′
2 satisfy α′′

1 |f+1 = α′′
2 |f+1.

Let C3 be a configuration where G1 and G3 form cliques made out of timely links. Also,
assume that there is a timely link from process f + 1 into G1 and a timely link from process
f + 1 into G3. Finally assume that every link between G1 and G3 as well as any other link
from/to process f + 1 drop all messages. Note that this is allowed by the system model. Let
α be an execution of the system in C3 that begins with all the activity from α′′

1 followed
by all the activity from α′′

2 , except for all the actions by process f + 1 in α′′
2 . Also, assume

that all actions in α occur before GST. Notice that if any process in G3 delivers a message
sent by the process f + 1 in α′′

2 , and thus in α, then the message has been previously sent in
α. Thus, this is a valid execution. Furthermore, for any process pi ∈ G1 ∪G2, α|pi

= α′′
1 |pi

and thus α is indistinguishable from α′′
1 to the processes in G1 ∪ G2. Similarily, for any

process pi ∈ G3 ∪G2, α|pi
= α′′

2 |pi
and thus α is indistinguishable from α′′

2 to the processes
in G3 ∪ G2. Finally, since decide(v1) occurs in α′′

1 and decide(v2) occurs in α′′
2 , then both

decide(v1) and decide(v2) occur in α. This violates the Agreement property, thus yielding a
contradiction. J

In Appendix §C we show that there is no deterministic algorithm implementing consensus
for the case of an f -clique + 1 outgoing timely link.

16 Live SMR in partitionable networks

References
1 M. K. Aguilera, C. Delporte-Gallet, H. Fauconnier, and S. Toueg. On implementing omega

with weak reliability and synchrony assumptions. In Proceedings of the Twenty-Second Annual
Symposium on Principles of Distributed Computing, PODC ’03, page 306–314, New York, NY,
USA, 2003. Association for Computing Machinery.

2 M. K. Aguilera, C. Delporte-Gallet, H. Fauconnier, and S. Toueg. Communication-efficient
leader election and consensus with limited link synchrony. PODC ’04, page 328–337, New
York, NY, USA, 2004. Association for Computing Machinery.

3 M. Alfatafta, B. Alkhatib, A. Alquraan, and S. Al-Kiswany. Toward a generic fault tolerance
technique for partial network partitioning. In 14th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 20), pages 351–368. USENIX Association, Nov. 2020.

4 A. Alquraan, H. Takruri, M. Alfatafta, and S. Al-Kiswany. An analysis of Network-Partitioning
failures in cloud systems. In 13th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 18), pages 51–68, Carlsbad, CA, Oct. 2018. USENIX Association.

5 M. Bravo, G. Chockler, and A. Gotsman. Making byzantine consensus live. In DISC, 2020.
6 M. Bravo, G. Chockler, and A. Gotsman. Liveness and latency of byzantine state-machine

replication. arXiv preprint arXiv:2202.06679, 2022.
7 C. Dwork, N. Lynch, and L. Stockmeyer. Consensus in the presence of partial synchrony. J.

ACM, 35(2):288–323, apr 1988.
8 M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of distributed consensus with

one faulty process. J. ACM, 32(2):374–382, apr 1985.
9 C. Jensen, H. Howard, and R. Mortier. Examining raft’s behaviour during partial network

failures. HAOC ’21, page 11–17, New York, NY, USA, 2021. Association for Computing
Machinery.

10 O. Naor, M. Baudet, D. Malkhi, and A. Spiegelman. Lumière: Byzantine view synchronization.
CoRR, abs/1909.05204, 2019.

11 O. Naor and I. Keidar. Expected linear round synchronization: The missing link for linear
byzantine SMR. CoRR, abs/2002.07539, 2020.

A. Naser Pastoriza, A. Gotsman and G. Chockler 17

A SMR Synchronizer Correctness

I Lemma 17. If a process pi enters a view v, then there exists a process pj ∈ H, a view
v′ ≥ v and a time t < Ei(v) such that pj sends WISH(v′) at t.

Proof. Since pi enters v, Ei(v) is defined and so is Efirst(v) ≤ Ei(v). Let pk be the first
process to enter v so that Ek(v) = Efirst(v). Suppose pk enters v upon receipt of an ENTER(v)
message. Then there exists a process pl and a time tl < Ek(v) such that pl sends ENTER(v)
at tl. Lines 5 and 20 imply that pl.view(tl) = v and thus Efirst(v) ≤ El(v) ≤ tl < Ek(v),
which is a contradiction.

Therefore, pk.views(Ek(v)) includes f+1 entries ≥ v. Since there exist at most f processes
not in H, there exists a process pj ∈ H, a view v′ ≥ v and a time t < Ek(v) ≤ Ei(v) such
that pj sends WISH(v′) at t. J

I Lemma 18. If a process pi sends WISH(v + 1) at a time t, then Ai(v)↓ ∧ Ai(v) ≤ t.

Proof. Let t, v ≥ 0 and pi be such that pi sends WISH(v + 1) at t. Then at t, pi executes
either line 2 or 7, and thus pi.view(t) = v.

If pi executes line 2, then pi attempts to advance from v at the time t and thus Ai(v)↓
and Ai(v) = t. Suppose now that pi executes line 7. Then Ei(v)↓ and satisfies Ei(v) <
t ∧ pi.view(Ei(v)) = v. Since pi.advanced(Ei(v)) = FALSE and pi.advanced(t) = TRUE, there
exists a time t′ such that Ei(v) < t′ < t at which pi executes the handler at line 1. Since
pi.view is non-decreasing and it is equal to v at Ei(v) as well as t, pi.view(t′) = v. Therefore,
pi attempts to advance from v at t′ and thus Ai(v)↓ and Ai(v) = t′ < t. J

I Lemma 19. For all views v, v′ > 0, if a process sends WISH(v) before sending WISH(v′),
then v ≤ v′.

Proof. Let s and s′ be the times at which a process pi sends WISH(v) and WISH(v′) respectively.
Notice that v = pi.view(s) + 1 and v′ = pi.view(s′) + 1. Since pi.view is non-decreasing,
as guaranteed by lines 9 and 14, pi.view(s) ≤ pi.view(s′). Therefore, v = pi.view(s) + 1 ≤
pi.view(s′) + 1 = v′. J

I Lemma 20. For all processes pi ∈ H, times t ≥ GST + ρ, and views v, if pi sends WISH(v)
at a time ≤ t, then there exists a view v′ ≥ v and a time t′ such that GST ≤ t′ ≤ t and pi

either sends ENTER(v′) or WISH(v′) at t.

Proof. Let s ≤ t be the time at which pi sends WISH(v). If s ≥ GST, then choosing t′ = s

and v′ = v validates the lemma. Assume now that s < GST. Since after GST the pi’s local
clock advances at the same rate as real time, there exists a time s′ satisfying GST ≤ s′ ≤ t
such that pi executes the retransmission code in line 4 at s′.

If pi.advanced(s′) = TRUE, then there exists a view v′ such that pi sends WISH(v′) at s′ by
executing the code in line 7. By Lemma 6, v′ ≥ v. Suppose now that pi.advanced(s′) = FALSE.
Since pi.advanced(s) = TRUE, there exists a time s′′ satisfying s < s′′ < s′ such that pi executes
the code in line 18 at s′′. Therefore, lines 9 and 14 guarantee that v = pi.view(s) + 1 ≤
pi.view(s′′). Since pi.view is non-decreasing, pi.view(s′′) ≤ pi.view(s′), and thus the ENTER(v′)
message that pi sends at s′ satisfies v′ = pi.view(s′) ≥ pi.view(s′′) ≥ v. J

B SMR Protocol Correctness

I Lemma 21. Let pi be a correct process in view v that never enters a view higher than v.
If pi predelivers only finitely many messages or it never predelivers a message that it has
broadcast while in v, then it eventually calls advance in v.

18 Live SMR in partitionable networks

Proof. Upon entering v the process pi starts timer_recovery (line 39). If the timer expires,
then pi calls advance in v (line 67).

Assume the timer does not expire. Then pi stops the timer at line 38, 51, 60 or 63. The
first is impossible, as this together with Monotonicity would imply that pi enters a higher
view. If pi stops the timer at line 63, then it calls advance in v (line 67). Assume now that pi

stops the timer at line 51 or 60. Then pi starts the timer timer_commit (lines 52 and 61). If
the timer expires, then pi calls advance in v (line 67). Then pi stops the timer at line 38, 63
or 28. The first is impossible, as this together with Monotonicity would imply that pi enters
a higher view. If pi stops the timer at line 63, then pi calls advance in v (line 67). Then pi

stops the timer at line 28. However, upon doing so, pi restarts the timer (line 30). Therefore,
for the timer timer_commit not to expire, pi must execute the code in line 28 infinitely many
times, and thus, it must predeliver infinitely many messages. Hence, if pi predelivers only
finitely many messages, then its timer timer_commit eventually expires causing pi to call
advance in v (line 67).

Consider now the case in which pi broadcasts a message m while in v. Upon doing so
pi starts timer_delivery[m] (line 8). If the timer expires, then pi calls advance in v (line 67).
Assume the timer does not expire. Then pi stops the timer at line 38, 63, or 29. The first
is impossible, as this together with Monotonicity would imply that pi enters a higher view.
If pi stops the timer at line 63, then it calls advance in v (line 67). Assume now that pi

stops the timer at line 29. Then, pi must predeliver m. Hence, if there exists a message m
broadcast by pi while in v that it never predelivers, its timer timer_delivery[m] eventually
expires causing pi to call advance in v (line 67). J

I Lemma 22. Consider a view v ≥ V such that EH
first(v) ≥ GST and leader(v) = pc. If at

each process pi ∈ H that enters v we have dur_recoveryi(v) > 5δ, dur_deliveryi(v) > 6δ and
dur_commiti(v) > ρ+ 6δ, then no process in H calls advance in v.

Proof. Let pi be the first process in H to call advance in v. By Lemma 12, we have
dur_recoveryi(v) ≤ 5δ, dur_deliveryi(v) ≤ 6δ or dur_commiti(v) ≤ ρ+6δ. This contradicts the
assumption that dur_recoveryi(v) > 5δ, dur_deliveryi(v) > 6δ and dur_commiti(v) > ρ+ 6δ.
Thus, no process in H calls advance in v. J

C An Impossibility Result for an f-clique + 1 Outgoing Link

Assume a model where there is a time after which there are f correct processes fully connected
by timely links and one extra outcoming timely link from the clique to an (f + 1)st correct
process.

I Theorem 23. There does not exist a deterministic algorithm implementing consensus in
the above model.

Proof. Suppose for the sake of contradiction that there exists such an algorithm. Let G1 be
the set {1, . . . , f}, G2 be the set {f + 1} and G3 be the set {f + 2, . . . , n}.

Let C1 be a configuration where G1 ∪ G2 form the majority stipulated by the system
model where processes from G1 constitute a clique and there is a timely link from the clique
to the process f + 1. Furthermore, assume that processes from G3 are initially crashed and
that any other link from/to process f + 1 drop all messages. Let α1 be an execution of the
system in C1 that contains an invocation propose(v1) by process 1 and no other invocations.
By Termination, a process from G1 eventually decides with a matching decide(v1). Let α′

1
be the prefix of α1 ending with decide(v1).

A. Naser Pastoriza, A. Gotsman and G. Chockler 19

Let C2 be a configuration where G3 ∪ G2 form the majority stipulated by the system
model where processes from G3 constitute a clique and there is a timely link from the clique
to the process f + 1. Furthermore, assume that processes from G1 are initially crashed and
that any other link from/to from process f + 1 drop all messages. Let α2 be an execution of
the system in C2 that contains an invocation propose(v2) by process n with v2 6= v1 and no
other invocations. By Termination, a process from G3 eventually decides with a matching
decide(v2). Let α′

2 be the prefix of α2 ending with decide(v2).
Let α′′

1 = α′
1|G1 and α′′

2 = α′
2|G2 . Since there is no communication from the process f + 1

into G1, the actions by processes in G1 are completely independent from the actions by
process f + 1. Therefore, the result α′′

1 of removing from α′
1 all the actions by process f + 1

is a valid execution. Similarily, α′′
2 is a valid execution.

Let C3 be a configuration where G1 and G3 form cliques made out of timely links. Also,
assume that there is a timely link from G1 to process f + 1 and a timely link from G3 to
process f + 1. Finally, assume that every link between G1 and G3 as well as any other link
from/to process f + 1 drop all messages. Note that this is allowed by the system model. Let
α be an execution of the system in C3 that begins with all the activity from α′′

1 followed
by all the activity from α′′

2 . Also, assume that all actions in α occur before GST. Since
the processes in each group, G1 or G2, behave independently of the processes in the other
group in α′′

1 and α′′
2 , respectively, this is a valid execution. Furthermore, for any process

pi ∈ G1∪G2, α|pi = α′′
1 |pi and thus α is indistinguishable from α′′

1 to the processes in G1∪G2.
Similarily, for any process pi ∈ G3 ∪G2, α|pi

= α′′
2 |pi

and thus α is indistinguishable from α′′
2

to the processes in G3 ∪G2. Finally, since decide(v1) occurs in α′′
1 and decide(v2) occurs in

α′′
2 , then both decide(v1) and decide(v2) occur in α. This violates the Agreement property,

thus yielding a contradiction. J

	1 Introduction
	2 Related Work
	3 System Model
	4 SMR Synchronizer
	4.1 Specification
	4.2 Implementation
	4.3 Correctness

	5 SMR in partitionable networks
	5.1 Implementation
	5.2 Correctness

	6 An impossibility result
	A SMR Synchronizer Correctness
	B SMR Protocol Correctness
	C An Impossibility Result for an f-clique + 1 Outgoing Link

